The effects of lubrication on profile and flatness control during ASR hot strip rolling

  • Yan-lin Li
  • Jian-guo Cao
  • Ning Kong
  • Dun Wen
  • Heng-hao Ma
  • Yun-song Zhou


The influence of lubrication on profile and flatness control during asymmetry self-compensating work roll (ASR) hot strip rolling process is studied in order to meet the requirement of schedule-free rolling (SFR) campaigns for non-oriented electrical steel production with identical strip width. The effects of lubrication on rolling force, surface topography, and work roll wear are analyzed through experimental data. A work roll wear model for a wide non-oriented electrical steel production considered lubrication during the hot rolling process is built, which can accurately reflect the work roll wear during the hot rolling process with lubrication. A 3D finite element model for roll stack considering lubrication is built. The effects of shifting strategy on ASR work roll wear contour, loaded roll gap crown, and edge drop are analyzed based on the models. The optimal shifting rhythm is 1, and the optimal shifting step is 2 ~ 3 mm. By combining the ASR technology with lubrication, the life of work rolls expands from 70 to 100 ~ 150 by different shifting step, the loaded roll gap crown can be efficiently controlled by bending force and the edge drop control ability can be improved efficiently within an entire rolling campaign.


Lubrication Profile and flatness control Work roll wear Finite element analysis Hot strip rolling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pellizzari M, Molinari A, Straffelini G (2005) Tribological behaviour of hot rolling rolls. Wear 259(7–12):1281–1289. doi:10.1016/j.wear.2004.12.006 CrossRefGoogle Scholar
  2. 2.
    Jiang ZY, Tang J, Sun W, Tieu AK, Wei D (2010) Analysis of tribological feature of the oxide scale in hot strip rolling. Tribol Int 43(8):1339–1345. doi:10.1016/j.triboint.2009.12.070 CrossRefGoogle Scholar
  3. 3.
    Cao JG, Wei GC, Zhang J, Chen XL, Zhou YZ (2008) VCR and ASR technology for profile and flatness control in hot strip mills. J Cent South Univ T 15(2):264–270. doi:10.1007/s11771-008-0049-0 CrossRefGoogle Scholar
  4. 4.
    Kosasih PB, Tieu AK (2007) Mixed film lubrication of strip rolling using O/W emulsions. Tribol Int 40(5):709–716. doi:10.1016/j.triboint.2006.05.010 CrossRefGoogle Scholar
  5. 5.
    Takami KM, Mahmoudi J, Dahlquist E, Lindenmo M (2011) Multivariable data analysis of a cold rolling control system to minimise defects. Int J Adv Manuf Tech 54(5):553–565. doi:10.1007/s00170-010-2946-2 CrossRefGoogle Scholar
  6. 6.
    Shirizly A, Lenard JG (2000) The effect of lubrication on mill loads during hot rolling of low carbon steel strips. J Mater Process Tech 97(1–3):61–68. doi:10.1016/S0924-0136(99)00339-8 CrossRefGoogle Scholar
  7. 7.
    Lo SW, Yang TC, Lin HS (2013) The lubricity of oil-in-water emulsion in cold strip rolling process under mixed lubrication. Tribol Int 66:125–133. doi:10.1016/j.triboint.2013.04.018 CrossRefGoogle Scholar
  8. 8.
    Azushima A, Xue WD, Yoshida Y (2007) Lubrication mechanism in hot rolling by newly developed simulation testing machine. Cirp Ann-Manuf Techn 56(1):297–300. doi:10.1016/j.cirp.2007.05.069 CrossRefGoogle Scholar
  9. 9.
    Jiang ZY, Tieu AK (2007) Contact mechanics and work roll wear in cold rolling of thin strip. Wear 263(7–12):1447–1453. doi:10.1016/j.wear.2006.12.068 CrossRefGoogle Scholar
  10. 10.
    Mancini E, Campana F, Sasso M, Newaz G (2012) Effects of cold rolling process variables on final surface quality of stainless steel thin strip. Int J Adv Manuf Tech 61(1):63–72. doi:10.1007/s00170-011-3698-3 CrossRefGoogle Scholar
  11. 11.
    Espinosa D, Lannoo G, Malbrancke J, Moreas G, Picard M (2010) Study of the scale behaviour in the finishing mill to improve the strip surface quality. Rev Metall 107(6):225–235. doi:10.1051/metal/2010024 CrossRefGoogle Scholar
  12. 12.
    Jiang ZY, Tieu AK, Sun WH, Tang JN, Wei DB (2006) Characterisation of thin oxide scale and its surface roughness in hot metal rolling. Mat Sci Eng a-Struct: A 435–436:434–438. doi:10.1016/j.msea.2006.07.070 CrossRefGoogle Scholar
  13. 13.
    Cao JG, Liu SJ, Zhang J, Song P, Yan TL, Zhou YZ (2011) ASR work roll shifting strategy for schedule-free rolling in hot wide strip mills. J Mater Process Tech 211(11):1768–1775. doi:10.1016/j.jmatprotec.2011.05.025 CrossRefGoogle Scholar
  14. 14.
    Li YL, Cao JG, Yang GH, Wen D, Zhou YZ, Ma HH (2015) ASR bending force mathematical model for the same width strip rolling campaigns in hot rolling. Steel Res Int 86(5):567–575. doi:10.1002/srin.201400133 CrossRefGoogle Scholar
  15. 15.
    Yang GH, Cao JG, Zhang J, Song P, Yan TL, Rao KF (2012) Profile and flatness control technology with a long shifting stroke on wide non-oriented electrical steel sheets. J Iron Steel Res Int 19(1):31–35. doi:10.1016/S1006-706X(12)60043-0 CrossRefGoogle Scholar
  16. 16.
    Liu L, Zang Y, Chen Y (2011) Hydrodynamic analysis of partial film lubrication in the cold rolling process. Int J Adv Manuf Tech 54(5):489–493. doi:10.1007/s00170-010-2951-5 CrossRefGoogle Scholar
  17. 17.
    Saniei M, Salimi M (2006) Development of a mixed film lubrication model in cold rolling. J Mater Process Tech 177(1–3):575–581. doi:10.1016/j.jmatprotec.2006.04.049 CrossRefGoogle Scholar
  18. 18.
    Xie H, Manabe KI, Furushima T, Tada K, Jiang Z (2016) Lubrication characterisation analysis of stainless steel foil during micro rolling. Int J Adv Manuf Tech 82(1):65–73. doi:10.1007/s00170-015-7344-3 CrossRefGoogle Scholar
  19. 19.
    Kimura Y, Fujita N, Matsubara Y, Kobayashi K, Amanuma Y, Yoshioka O, Sodani Y (2015) High-speed rolling by hybrid-lubrication system in tandem cold rolling mills. J Mater Process Tech 216:357–368. doi:10.1016/j.jmatprotec.2014.10.002 CrossRefGoogle Scholar
  20. 20.
    Kijima H (2015) Influence of lubrication on roughness crushing in skin-pass rolling of steel strip. J Mater Process Tech 216:1–9. doi:10.1016/j.jmatprotec.2014.08.010 CrossRefGoogle Scholar
  21. 21.
    Ahmed R, Sutcliffe MPF (2000) An experimental investigation of surface pit evolution during cold-rolling or drawing of stainless steel strip. J Tribol 123(1):1–7. doi:10.1115/1.1327580 CrossRefGoogle Scholar
  22. 22.
    Mancini E, Sasso M, Amodio D, Ferretti R, Sanfilippo F (2010) Surface defect generation and recovery in cold rolling of stainless steel strips. J Tribol 133(1):012202–012202. doi:10.1115/1.4002218 CrossRefGoogle Scholar
  23. 23.
    Sun JL (2010) Lubrication rolling process. Metallurgical Industry Press, BeijingGoogle Scholar
  24. 24.
    Azushima A, Xue WD, Yoshida Y (2009) Influence of lubricant factors on coefficient of friction and clarification of lubrication mechanism in hot rolling. ISIJ Int 49(6):868–873. doi:10.2355/isijinternational.49.868 CrossRefGoogle Scholar
  25. 25.
    Zhao NT, Cao JG, Zhang J, Su Y, Yan TL, Rao KF (2008) Work roll thermal contour prediction model of nonoriented electrical steel sheets in hot strip mills. J Univ Sci Technol B 15(3):352–356. doi:10.1016/S1005-8850(08)60066-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Yan-lin Li
    • 1
  • Jian-guo Cao
    • 1
  • Ning Kong
    • 1
  • Dun Wen
    • 2
  • Heng-hao Ma
    • 2
  • Yun-song Zhou
    • 2
  1. 1.School of Mechanical EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Wuhan Iron & Steel (Group)CorpWuhanChina

Personalised recommendations