In-line computational shear interferometry of insert molded micro parts for optical application

  • Mostafa Agour
  • Carla Flosky
  • Oltmann Riemer
  • Claas Falldorf
  • Ralf B. Bergmann
ORIGINAL ARTICLE

Abstract

Micro injection moulding is a mass production of micro optics that offers the possibility of a high functional integration within a single micro part by insert moulding. Since the functionality of the micro parts depends on the homogeneity of the overmoulded polymer layer, a robust, accurate and fast metrology system is needed for a quantitative quality assessment. Here, we demonstrate an in-line metrology approach for the optical inspection of insert molded micro parts. In contrast to standard interferometers, the proposed system has low demands regarding the coherence of illumination. Thus, an LED light source can be used instead of a laser, reducing the cost and increasing the safety of the production platform. In addition, the system is robust against mechanical distortions, since it is based on a common path approach. These advantages make the system a good candidate that fulfills the needs in regard to the in-line inspection of insert molded micro parts. As an example of application, the proposed system is used to inspect a cannula with overmolded thermoplastic as a light sleeve providing illumination over a specific area of surgery.

Keywords

Micro injection molding Inspection shear interferometry Computational metrology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weber L, Ehrfeld W (1999) Mikroabformung: Ein bericht zu marktlage und entwicklungpotential. Kunststoffe 89(10):192– 202Google Scholar
  2. 2.
    Sha B, Dimov S, Griffiths C, Packianather M (2007) Investigation of micro-injection moulding: factors affecting the replication quality. J Mater Process Technol 183(2–3):284–296. doi:10.1016/j.jmatprotec.2006.10.019 CrossRefGoogle Scholar
  3. 3.
    Chen S C, Chang Y, Chang Y P, Chen Y C, Tseng C Y (2009) Effect of cavity surface coating on mold temperature variation and the quality of injection molded parts. International Communications in Heat and Mass Transfer 36(10):1030–1035. doi:10.1016/j.icheatmasstransfer.2009.06.020 CrossRefGoogle Scholar
  4. 4.
    Cheng K, Huo D (2013) Micro cutting: fundamentals and applications. Wiley, ChichesterCrossRefGoogle Scholar
  5. 5.
    Lucchetta G, Bariani P (2010) Sustainable design of injection moulded parts by material intensity reduction. {CIRP} Annals - Manufacturing Technology 59(1):33–36. doi:10.1016/j.cirp.2010.03.092 CrossRefGoogle Scholar
  6. 6.
    Griffiths C, Tosello G, Dimov S, Scholz S, Rees A, Whiteside B (2015) Characterisation of demoulding parameters in microinjection moulding. Microsyst Technol 21(8):1677–1690. doi:10.1007/s00542-014-2269-6 CrossRefGoogle Scholar
  7. 7.
    Hansen H, Carneiro K, Haitjema H, Chiffre L D (2006) Dimensional micro and nano metrology. {CIRP} Annals - Manufacturing Technology 55(2):721–743. doi:10.1016/j.cirp.2006.10.005 CrossRefGoogle Scholar
  8. 8.
    Yoshii M, Kuramoto H, Kato K (1994) Experimental study of transcription of minute width grooves in injection molding. Polym Eng Sci 34(15):1211–1218. doi:10.1002/pen.760341507 CrossRefGoogle Scholar
  9. 9.
    Seebacher S, Osten W, Jüptner W P O (1998) Measuring shape and deformation of small objects using digital holography. Proceedings of the SPIE 3479:104–115. doi:10.1117/12.316439 CrossRefGoogle Scholar
  10. 10.
    Kopylow C V, Bergmann R (2013) Optical metrology. In: Vollertsen F (ed) Forming, Micro Metal. Springer, pp 392–404Google Scholar
  11. 11.
    Agour M, El-Farahaty K, Seisa E, Omar E, Sokkar T (2015) Single-shot digital holography for fast measuring optical properties of fibers. Appl Opt 54(28):E188–E195. doi:10.1364/AO.54.00E188 CrossRefGoogle Scholar
  12. 12.
    Falldorf C, Osten S V, Kopylow C, Jüptner W (2009) Shearing interferometer based on the birefringent properties of a spatial light modulator. Opt Lett 34(18):2727–2729. doi:10.1364/OL.34.002727 CrossRefGoogle Scholar
  13. 13.
    Falldorf C, Klattenhoff R, Gesierich A, Kopylow C V, Bergmann R (2009) Lateral shearing interferometer based on a spatial light modulator in the fourier plane. In: Osten M K W (ed) fringe 2009. Springer, pp 93–98Google Scholar
  14. 14.
    Falldorf C, Agour M, Bergmann R B (2014) Advanced wave field sensing using computational shear interferometry. Proceedings of the SPIE 9204:92,040C–92,040C–9. doi:10.1117/12.2062814 CrossRefGoogle Scholar
  15. 15.
    Falldorf C, Agour M, Bergmann R B (2015) Digital holography and quantitative phase contrast imaging using computational shear interferometry. Opt Eng 54(2):024,110. doi:10.1117/1.OE.54.2.024110 CrossRefGoogle Scholar
  16. 16.
    Agour M, Riemer O, Flosky C, Meier A, Bergmann R B, Falldorf C (2016) Quantitative phase contrast imaging of microinjection molded parts using computational shear interferometry. IEEE Transactions on Industrial Informatics 12(4):1623–1630. doi:10.1109/TII.2015.2481704 CrossRefGoogle Scholar
  17. 17.
    Falldorf C (2011) Measuring the complex amplitude of wave fields by means of shear interferometry. J Opt Soc Am A 28(8):1636–1647. doi:10.1364/JOSAA.28.001636 CrossRefGoogle Scholar
  18. 18.
    Falldorf C, von Kopylow C, Bergmann R B (2013) Wave field sensing by means of computational shear interferometry. J Opt Soc Am A 30(10):1905–1912. doi:10.1364/JOSAA.30.001905 CrossRefGoogle Scholar
  19. 19.
    Agour M, Falldorf C, Bergmann R B (2016) Shape measurements of microscopic objects using computational shear interferometry. Proceedings of the SPIE 9718:97,182M. doi:10.1117/12.2212910 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Mostafa Agour
    • 1
    • 2
  • Carla Flosky
    • 3
  • Oltmann Riemer
    • 3
  • Claas Falldorf
    • 1
  • Ralf B. Bergmann
    • 1
    • 4
  1. 1.BIAS-Bremer Institut für angewandte StrahltechnikBremenGermany
  2. 2.Department of Physics, Faculty of ScienceAswan UniversityAswanEgypt
  3. 3.Laboratory for Precision Machining (LFM)BremenGermany
  4. 4.MAPEX Center for Materials and Processes and Faculty of Physics and Electrical EngineeringUniversity of BremenBremenGermany

Personalised recommendations