Skip to main content

Advertisement

Log in

Adaptive MRAC-based direct torque control with SVM for sensorless induction motor using adaptive observer

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents an improved direct torque control (DTC) method for induction motor (IM) drive. The main drawback of the conventional DTC is the use of hysteresis comparators which leads to high torque and flux ripples. The improvement in this paper includes using the space vector modulation to preserve a constant switching frequency and to reduce totally flux and torque ripples. Besides, the torque and stator flux regulation will be done based on model reference adaptive control (MRAC) strategy to ensure a robust control against external disturbance and less sensitivity from machine parameter variation unlike the conventional proportional-integral (PI) controllers. Furthermore, a design of an adaptive observer based on Lyapunov stability is presented for speed/flux and load torque estimation. The observer can improve the control performances and decrease the cost and increase reliability of the global control system by reducing the number of sensors. The proposed strategy will be examined under simulation tests using Matlab/Simulink and experimental implementation with real-time interface (RTI) based on dSpace 1104 board.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Casadei D, Profumo F, Serra G, Tani A (2002) FOC and DTC: two viable schemes for induction motors torque control. IEEE Trans Power Electron 17:779–787. doi:10.1109/TPEL.2002.802183

    Article  Google Scholar 

  2. Ren Y, Zhu ZQ (2015) Enhancement of steady-state performance in direct-torque-controlled dual three-phase permanent-magnet synchronous machine drives with modified switching table. IEEE Trans Ind Electron 62:3338–3350. doi:10.1109/TIE.2014.2376881

    Google Scholar 

  3. Alsofyani IM, Idris NRN (2016) Simple flux regulation for improving state estimation at very low and zero speed of a speed sensorless direct torque control of an induction motor. IEEE Trans Power Electron 31:3027–3035. doi:10.1109/TPEL.2015.2447731

    Article  Google Scholar 

  4. VN N, Panda A, Singh SP (2016) A three-level fuzzy-2 DTC of induction motor drive using SVPWM. IEEE Trans Ind Electron 63:1467–1479. doi:10.1109/TIE.2015.2504551

    Article  Google Scholar 

  5. Mesloub H, Benchouia MT, Goléa A et al (2016) Predictive DTC schemes with PI regulator and particle swarm optimization for PMSM drive: comparative simulation and experimental study. Int J Adv Manuf Technol. doi:10.1007/s00170-016-8406-x

    Google Scholar 

  6. Habetler TG, Profumo F, Pastorelli M, Tolbert LM (1992) Direct torque control of induction machines using space vector modulation. Ind Appl IEEE Trans 28:1045–1053. doi:10.1109/28.158828

    Article  Google Scholar 

  7. Rodriguez J, Pontt J, Silva C, et al. (2004) A novel direct torque control scheme for induction machines with space vector modulation. IEEE 35th annu power electron spec conf (IEEE Cat No04CH37551) 1392–1397. doi: 10.1109/PESC.2004.1355626

  8. Ammar A, Bourek A, Benakcha A (2015) Modified load angle direct torque control for sensorless induction motor using sliding mode flux observer. In: 2015 4th int. conf. electr. eng. IEEE, pp 1–6

  9. Lascu C, Boldea I, Blaabjerg F (2000) A modified direct torque control for induction motor sensorless drive. IEEE Trans Ind Appl 36:122–130. doi:10.1109/28.821806

    Article  Google Scholar 

  10. Saberi H, Feyzi M, Sharifian MBB, Sabahi M (2014) Improved sensorless direct torque control method using adaptive flux observer. IET Power Electron 7:1675–1684. doi:10.1049/iet-pel.2013.0390

    Article  Google Scholar 

  11. Fu X, Li S (2015) A novel neural network vector control technique for induction motor drive. IEEE Trans Energy Convers 30:1428–1437. doi:10.1109/TEC.2015.2436914

    Article  Google Scholar 

  12. Stavropoulos P, Chantzis D, Doukas C, Papacharalampopoulos A (2013) Monitoring and control of manufacturing processes: a review. Procedia CIRP 8:421–425. doi:10.1016/j.procir.2013.06.127

    Article  Google Scholar 

  13. Choi YS, Choi HH, Jung JW (2016) Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives. IEEE Trans Power Electron 31:3728–3737. doi:10.1109/TPEL.2015.2460249

    Article  Google Scholar 

  14. Lascu C, Trzynadlowski AM (2004) Combining the principles of sliding mode, direct torque control, and space-vector modulation in a high-performance sensorless AC drive. 40:170–177

  15. Zhang Z, Tang R, Bai B, Xie D (2010) Novel direct torque control based on space vector modulation with adaptive stator flux observer for induction motors. IEEE Trans Magn 46:3133–3136. doi:10.1109/TMAG.2010.2051142

    Article  Google Scholar 

  16. Astrom KJ, Wittenmar B (1994) Adaptive control, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston

    Google Scholar 

  17. Abdeddaim S, Betka A, Drid S, Becherif M (2014) Implementation of MRAC controller of a DFIG based variable speed grid connected wind turbine. Energy Convers Manag 79:281–288. doi:10.1016/j.enconman.2013.12.003

    Article  Google Scholar 

  18. Wu G-Q, Wu S-N, Bai Y-G, Liu L (2013) Experimental studies on model reference adaptive control with integral action employing a rotary encoder and tachometer sensors. Sensors 13:4742–4759. doi:10.3390/s130404742

    Article  Google Scholar 

  19. Belkacem S, Naceri F, Abdessemed R (2011) Improvement in DTC-SVM of AC drives using a new robust adaptive control algorithm. Int J Control Autom Syst 9:267–275. doi:10.1007/s12555-011-0208-1

    Article  Google Scholar 

  20. Barambones O, Alkorta P (2014) Position control of the induction motor using an adaptive sliding-mode controller and observers. IEEE Trans Ind Electron 61:6556–6565. doi:10.1109/TIE.2014.2316239

    Article  Google Scholar 

  21. Cirrincione M, Pucci M (2005) An MRAS-based sensorless high-performance induction motor drive with a predictive adaptive model. 52:532–551

  22. Naifar O, Boukettaya G, Ouali A (2015) Global stabilization of an adaptive observer-based controller design applied to induction machine. Int J Adv Manuf Technol 81:423–432. doi:10.1007/s00170-015-7099-x

    Article  Google Scholar 

  23. Yin Z, Zhang Y, Du C et al (2016) Research on anti-error performance of speed and flux estimation for induction motors based on robust adaptive state observer. IEEE Trans Ind Electron 63:3499–3510. doi:10.1109/TIE.2016.2524414

    Article  Google Scholar 

  24. Guo L, Parsa L (2012) Model reference adaptive control of five-phase IPM motors based on neural network. IEEE Trans Ind Electron 59:1500–1508. doi:10.1109/TIE.2011.2163371

    Article  Google Scholar 

  25. STOTEN DP, DI BERNARDO M (1996) Application of the minimal control synthesis algorithm to the control and synchronization of chaotic systems. Int J Control 65:925–938. doi:10.1080/00207179608921731

    Article  MathSciNet  MATH  Google Scholar 

  26. Maes J, Melkebeek JA (2000) Speed-sensorless direct torque control of induction motors using an adaptive flux observer. IEEE Trans Ind Appl 36:778–785. doi:10.1109/28.845053

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkarim Ammar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, A., Benakcha, A. & Bourek, A. Adaptive MRAC-based direct torque control with SVM for sensorless induction motor using adaptive observer. Int J Adv Manuf Technol 91, 1631–1641 (2017). https://doi.org/10.1007/s00170-016-9840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9840-5

Keywords

Navigation