Skip to main content
Log in

Effect of wavy tool path on the stability properties of milling by the implicit subspace iteration method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

There are several practical methods to reduce machine tool vibrations that have negative effects especially on the quality of the machined surface. The most intricate vibration is the regenerative one originated in a delay effect of cutting processes. One group of the methods that may be successful in avoiding regenerative vibrations is the appropriate variation of the corresponding time delay. This study presents the stability analysis of milling processes in case of an especially intricate way of varying the delay in time: the radial depth of cut is varied in face milling resulting in a wavy tool path. The combination of the semi-discretization method and the implicit subspace iteration method is introduced to present an efficient way of calculating stability charts that provide conclusions regarding the use of this method in eliminating chatter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Budak E, Altintas Y (1998) Analytical prediction of chatter stability in milling—part I: general formulation. J Dyn Syst Meas Control 120:22–30

    Article  Google Scholar 

  2. Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, Cambridge

    Google Scholar 

  3. Tlusty J (2000) Manufacturing processes and equipment. Prentice Hall, Upper Saddle River

    Google Scholar 

  4. Tobias SA (1965) Machine tool vibration. Blackie and Son, London

    Google Scholar 

  5. Stepan G (1989) Retarded dynamical systems. Longman, Harlow

    MATH  Google Scholar 

  6. Hale J (1977) Theory of functional differential equations. Springer Verlag, New York

    Book  MATH  Google Scholar 

  7. Budak E (2003) An analytical design method for milling cutters with nonconstant pitch to increase stability, Part I: Theory. J Manuf Sci Eng 125(1):29–35

    Article  MathSciNet  Google Scholar 

  8. Budak E (2003) An analytical design method for milling cutters with nonconstant pitch to increase stability, Part II: application. J Manuf Sci Eng 125(1):35–38

    Article  Google Scholar 

  9. Jin X, Sun Y, Guo Q, Guo D (2016) 3D stability lobe considering the helix angle effect in thin-wall milling. Int J Adv Manuf Technol 82(9):2123–2136

    Article  Google Scholar 

  10. Tunc LT, Ozkirimli O, Budak E (2015) Generalized cutting force model in multi-axis milling using a new engagement boundary determination approach. Int J Adv Manuf Technol 77(1):341–355

    Google Scholar 

  11. Slavicek J(1965) The effect of irregular tooth pitch on stability of milling. In: Proceedings of the 6th MTDR Conference, Pergamon Press, London pp. 15–22

  12. Opitz H, E. U. Dregger, H. Roese (1966) Improvement of the dynamic stability of the milling process by irregular tooth pitch, Proc. Adv. MTDR Conf. 7 pp. 213–227

  13. P. Vanherck (1967) Increasing milling machine productivity by use of cutters with non-constant cutting edge pitch, 8th MTDR Conference, Manchester pp. 947–960

  14. Imani BM, Sadeghi MH, Nasrabadi MK (2008) Effects of helix angle variations on stability of low immersion milling. IUST Int J Eng Sci 19(5):115–122

    Google Scholar 

  15. Turner S, Merdol D, Altintas Y, Ridgway K (2007) Modelling of the stability of variable helix end mills. Int J Mach Tools Manuf 9-47(9):1410–1416

    Article  Google Scholar 

  16. Sims N, Mann B, Huyanan S (2008) Analytical prediction of chatter stability for variable pitch and variable helix milling tools. J Sound Vib 317(3–5):664–686

    Article  Google Scholar 

  17. Guo Q, Jiang Y, Zhao B, Ming P (2016) Chatter modeling and stability lobes predicting for non-uniform helix tools. Int J Adv Manuf Technol . doi:10.1007/s00170-016-8458-y1-16 online-first

    Google Scholar 

  18. Song Q, Ai X, Zhao J (2011) Design for variable pitch end mills with high milling stability. Int J Adv Manuf Technol 55:891–903

    Article  Google Scholar 

  19. Yusoff AR, Sims ND (2011) Optimisation of variable helix tool geometry for regenerative chatter mitigation. Int J Mach Tools Manuf 51(2):133–141

    Article  Google Scholar 

  20. Insperger T, Stepan G (2011) Semi-discretization for time-delay systems. Springer, New York

    Book  MATH  Google Scholar 

  21. Stepan G (2001) Modelling nonlinear regenerative effects in metal cutting. Phil Trans R Soc Lond A 359:739–757

    Article  MATH  Google Scholar 

  22. Wang ZH, Hu HY (1999) Robust stability test for dynamic systems with short delays by using Padé approximation. Nonlinear Dynamics 18:275–287

    Article  MATH  Google Scholar 

  23. Dombovari Z, Altintas Y, Stepan G (2010) The effect of serration on mechanics and stability of milling cutters. Int J Mach Tools Manuf 50(6):511–520

    Article  Google Scholar 

  24. Merdol SD, Altintas Y (2004) Mechanics and dynamics of serrated cylindrical and tapered end mills. ASME J Manuf Sci Eng 126(2):317–326

    Article  Google Scholar 

  25. Inamura T, Sata T (1974) Stability analysis of cutting under varying spindle speed. Annals of the CIRP 23(1):119–120

    Google Scholar 

  26. Insperger T, Stepan G (2004) Stability analysis of turning with periodic spindle speed modulation via semi-discretization. J Vib Control 10:1835–1855

    Article  MATH  Google Scholar 

  27. Zatarain M, Bediaga I, Munoa J, Lizarralde R (2008) Stability of milling processes with continuous spindle speed variation: analysis in the frequency and time domains, and experimental correlation. CIRP Ann 57(1):379–384

    Article  Google Scholar 

  28. Alvarez J, Zatarain M, Barrenetxea D, Ortega N, Gallego I (2013) Semi-discretization for stability analysis of in-feed cylindrical grinding with continuous workpiece speed variation. Int J Adv Manuf Technol 69(1):113–120

    Article  Google Scholar 

  29. Albertelli P, Mussi V, Monno M (2014) The analysis of tool life and wear mechanisms in spindle speed variation machining. Int J Adv Manuf Technol 72(5):1051–1061

    Article  Google Scholar 

  30. Insperger T (2010) Full-discretization and semi-discretization for milling stability prediction: some comments. Int J Mach Tool Manuf 50:658–662

    Article  Google Scholar 

  31. Insperger T, Stepan G (2004) Updated semi-discretization method for periodic delay differential equations with discrete delay. Int J Numer Meth Eng 61:117–141

    Article  MathSciNet  MATH  Google Scholar 

  32. Insperger T, Stepan G, Turi J (2008) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313:334–341

    Article  Google Scholar 

  33. Zatarain M, Dombovari Z (2014) Stability analysis of milling with irregular pitch tools by the implicit subspace iteration method. Springer–Verlag, Berlin

    Google Scholar 

  34. Zatarain M, Alvarez J, Bediaga I, Munoa J, Dombovari Z (2014) Implicit subspace iteration as an efficient method to compute milling stability lobe diagrams. Springer-Verlag, London

    Google Scholar 

  35. Bachrathy D, Insperger T, Stepan G (2009) Surface properties of the machined workpiece for helical mills. Mach Sci Technol 13:227–245

    Article  Google Scholar 

  36. Kao YC, Nguyen NT, Chen MS, Su ST (2015) A prediction method of cutting force coefficients with helix angle of flat-end cutter and its application in a virtual three-axis milling simulation system. Int J Adv Manuf Technol 77(9):1793–1809

    Article  Google Scholar 

  37. Zhang Z, Li H, Meng G, Ren S, Zhou J (2016) A new procedure for the prediction of the cutting forces in peripheral milling. Int J Adv Manuf Technol . doi:10.1007/s00170-016-9186-z1-7 online-first

    Google Scholar 

  38. Hulbert GM (1992) Time finite element methods for structural dynamics. Int J Num Meth in Eng 33:307–331

    Article  MathSciNet  MATH  Google Scholar 

  39. Budak E, Altintas Y (1998) Analytical prediction of chatter stability conditions for multi-degree of systems in milling. Transactions of ASME Journal of Dynamic Systems Measurement and Control 120:22–30

    Article  Google Scholar 

  40. Bayly PV, Halley JE, Mann BP, Davies MA (2003) Stability of interrupted cutting by temporal finite element analysis. J Manuf Sci Eng 125(2):220–225

    Article  Google Scholar 

  41. Elbeyli O, Sun JQ (2004) On the semi-discretization method for feedback control design of linear systems with time delay. J Sound Vib 273:429–440

    Article  MathSciNet  MATH  Google Scholar 

  42. Hartung F, Insperger T, Stepan G, Turi J (2006) Approximate stability charts for milling processes using semi-discretization. Appl Math Comput 174:51–73

    MathSciNet  MATH  Google Scholar 

  43. Henninger C, Eberhard P (2008) Improving the computational efficiency and accuracy of the semi-discretization method for periodic delay-differential equations. Eur J Mech A-Solid 27:975–985

    Article  MATH  Google Scholar 

  44. Floquet G (1883) Sur les équations différentielles linéaires à coefficients périodiques. Annales de l’École Normale Supérieure 12:47–88

    Article  MATH  Google Scholar 

  45. Henninger C, Eberhard P (2008) Improving the computational efficiency and accuracy of the semi-discretization method for periodic delay-differential equations. European Journal of Mechanics A/Solids 27:975–985

    Article  MATH  Google Scholar 

  46. Insperger T, Mann BP, Surmann T, Stepan G (2008) On the chatter frequencies of milling processes with runout. Int J Mach Tools Manuf 48:1081–1089

  47. Szalai R, Stepan G (2006) Lobes and lenses in the stability chart of interrupted turning. Journal of Computational and Nonlinear Dynamics, Transactions of the ASME, 205–211

  48. Li Z, Yang Z, Peng Y, Zhu F, Ming X (2015) Prediction of chatter stability for milling process using Runge-Kutta-based complete discretization method. Int J Adv Manuf Technol . doi:10.1007/s00170-015-8207-71-10 online-first

  49. Parsian A, Magnevall M, Eynian M, Beno T (2016) Time domain simulation of chatter vibrations in indexable drills. Int J Adv Manuf Technol . doi:10.1007/s00170-016-9137-81-16 online-first

  50. Dombovari Z, Stepan G (2015) On the bistable zone of milling processes. Phil Trans R Soc A 373:20140409

  51. Molnár TG, Insperger T, Hogan SJ, Stepan G (2016) Estimation of the bistable zone for machining operations for the case of a distributed cutting-force model. J Comput Nonlinear Dyn 11(5):051008

  52. Weinert K, Surmann T, Enk D, Webber O (2007) The effect of runout on the milling tool vibration and surface quality. Prod Eng - Res Dev 1(3):265–270

  53. Krüger M, Denkena B (2013) Model-based identification of tool runout in end milling and estimation of surface roughness from measured cutting forces. Int J Adv Manuf Technol 65(8):1067–1080

  54. Schmitz TL, Couey J, Marsh E, Mauntler N, Hughes D (2007) Runout effects in milling: surface finish, surface location error, and stability. Int J Mach Tools Manuf 47(5):841–851

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bachrathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toth, M., Bachrathy, D. & Stepan, G. Effect of wavy tool path on the stability properties of milling by the implicit subspace iteration method. Int J Adv Manuf Technol 91, 1781–1789 (2017). https://doi.org/10.1007/s00170-016-9827-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9827-2

Keywords

Navigation