Abstract
Dry electrical discharge machining (DEDM) has been developed as an alternative manufacturing process to the traditional EDM in liquid dielectric media. The absence of the liquid dielectric allows DEDM to be performed by simpler and environmentally friendlier machines. The erosion in DEDM mainly occurs due to the bombardment of the workpiece electrode surface by charged particles produced by micro electric discharges. Thus, the understanding of the fundamental properties of the micro plasma is necessary to explain the erosion mechanisms in this process. Optical emission spectroscopy of DEDM single discharges and its numerical interpretation by emission spectra simulation are developed in the present work. The hypothesis of plasmas in local thermal equilibrium (LTE) is developed, whereas the formation of an electron beam in non-LTE plasmas is also considered and briefly introduced. The simulations show that large amount of different ionic species is produced from the anode workpiece material, and the estimated electron temperature profile is peaking at the plasma centre. Moreover, hot anode spots formed on the workpiece surface due to the plasma-material interactions seem to be considerably smaller than the total plasma diameter and the respective eroded crater. These characteristics indicate that DEDM produces discharges similar to anode dominated vacuum arcs, which present properties very different from EDM discharges in liquid dielectric.
Similar content being viewed by others
References
Leão FN, Pashby IR (2004) A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining. J Mater Process Technol 149(1–3):341–346. doi:10.1016/j.jmatprotec.2003.10.043
Kunieda M, Yoshida M, Taniguchi N (1997) Electrical discharge machining in gas. CIRP Ann Manuf Technol 46(1):143–146. doi:10.1016/S0007-8506(07)60794-X
ZhanBo Y, Takahashi J, Kunieda M (2004) Dry electrical discharge machining of cemented carbide. J Mater Process Technol 149(1–3):353–357. doi:10.1016/j.jmatprotec.2003.10.044
Govindan P, Gupta A, Joshi SS, Malshe A, Rajurkar KP (2013) Single-spark analysis of removal phenomenon in magnetic field assisted dry EDM. J Mater Process Technol 213(7):1048–1058. doi:10.1016/j.jmatprotec.2013.01.016
Govindan P, Joshi SS (2010) Experimental characterization of material removal in dry electrical discharge drilling. Int J Mach Tools Manuf 50(5):431–443. doi:10.1016/j.ijmachtools.2010.02.004
Shen Y, Liu Y, Sun W, Zhang Y, Dong H, Zheng C, Ji R (2016) High-speed near dry electrical discharge machining. J Mater Process Technol 233:9–18. doi:10.1016/j.jmatprotec.2016.02.008
Kunieda M, Miyoshi Y, Takaya T, Nakajima N, ZhanBo Y, Yoshida M (2003) High speed 3D milling by dry EDM. CIRP Ann Manuf Technol 52(1):147–150. doi:10.1016/S0007-8506(07)60552-6
Saha SK, Choudhury SK (2009) Experimental investigation and empirical modeling of the dry electric discharge machining process. Int J Mach Tools Manuf 49(3–4):297–308. doi:10.1016/j.ijmachtools.2008.10.012
Roth R, Kuster F, Wegener K (2013) Influence of oxidizing gas on the stability of dry electrical discharge machining process. Procedia CIRP 6:338–343. doi:10.1016/j.procir.2013.03.029
Roth R, Balzer H, Kuster F, Wegener K (2012) Influence of the anode material on the breakdown behavior in dry electrical discharge machining. Procedia CIRP 1:639–644. doi:10.1016/j.procir.2012.05.013
Kunieda M, Takaya T, Nakano S (2004) Improvement of dry EDM characteristics using piezoelectric actuator. CIRP Ann Manuf Technol 53(1):183–186. doi:10.1016/S0007-8506(07)60674-X
Kunieda M, Furuoya S, Taniguchi N (1991) Improvement of EDM efficiency by supplying oxygen gas into gap. CIRP Ann Manuf Technol 40(1):215–218. doi:10.1016/S0007-8506(07)61971-4
Ramani V, Cassidenti ML (1985) Inert-gas electrical discharge machining. In: NASA Technical Brief NPO 15660:1985
Zhang QH, Du R, Zhang JH, Zhang QB (2006) An investigation of ultrasonic-assisted electrical discharge machining in gas. Int J Mach Tools Manuf 46(12–13):1582–1588. doi:10.1016/j.ijmachtools.2005.09.023
Joshi S, Govindan P, Malshe A, Rajurkar K (2011) Experimental characterization of dry EDM performed in a pulsating magnetic field. CIRP Ann Manuf Technol 60(1):239–242. doi:10.1016/j.cirp.2011.03.114
Shen Y, Liu Y, Zhang Y, Dong H, Sun W, Wang X, Zheng C, Ji R (2015) High-speed dry electrical discharge machining. Int J Mach Tools Manuf 93:19–25. doi:10.1016/j.ijmachtools.2015.03.004
Tao J (2008) Investigation of dry and near-dry electrical discharge milling process. University Of Michigan
Kanmani Subbu S, Karthikeyan G, Ramkumar J, Dhamodaran S (2011) Plasma characterization of dry μ-EDM. Int J Adv Manuf Technol 56(1–4):187–195. doi:10.1007/s00170-011-3162-4
Macedo FTB, Wiessner M, Hollenstein C, Kuster F, Wegener K (2016) Investigation of the fundamentals of tool electrode wear in dry EDM. Procedia CIRP 46:55–58. doi:10.1016/j.procir.2016.03.170
MacFarlane JJ, Golovkin IE, Wang P, Woodruff PR, Pereyra NA (2007) SPECT3D—a multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output. High Energy Density Physics 3(1–2):181–190. doi:10.1016/j.hedp.2007.02.016
Descoeudres A (2006) Characterization of electrical discharge machining plasmas. EPFL
Maradia U (2014) Meso-micro EDM. Zürich, ETH-Zürich
Loeb LB, Meek JM (1941) The mechanism of the electric spark. Stanford University Press
Raizer YP (1991) Gas discharge physics. Springer-Verlag, Berlin; New York
Meek JM, Craggs JD (1978) Electrical breakdown of gases. Wiley
Toyota H, Zama S, Akamine Y, Matsuoka S, Hidaka K (2002) Gaseous electrical discharge characteristics in air and nitrogen at cryogenic temperature. Dielectrics and Electrical Insulation, IEEE Transactions on 9(6):891–898. doi:10.1109/TDEI.2002.1115482
Torres JM, Dhariwal RS (1999) Electric field breakdown at micrometre separations. Nanotechnology 10(1):102
Ching-Heng C, Yeh JA, Pei-Jen W (2006) Electrical breakdown phenomena for devices with micron separations. J Micromech Microeng 16(7):1366
Dhariwal RS, Torres JM, Desmulliez MPY (2000) Electric field breakdown at micrometre separations in air and nitrogen at atmospheric pressure. Science, Measurement and Technology, IEE Proceedings 147(5):261–265. doi:10.1040/ip-smt:20000506
Klas M, Matejćik Š, Radjenović B, Radmilović-Radjenović M (2011) Experimental and theoretical studies of the breakdown voltage characteristics at micrometre separations in air. EPL (Europhysics Letters) 95(3):35002
Boxman RL, Sanders DM, Martin PJ (1995) Handbook of vacuum arc science and technology: fundamentals and applications. Noyes Publications
Miller HC (1983) Vacuum-arc anode phenomena. IEEE Transactions on Plasma Science 11(2):76–89. doi:10.1109/tps.1983.4316225
Jakubowski L, Sadowski MJ (2002) Hot-spots in plasma-focus discharges as intense sources of different radiation pulses. Braz J Phys 32:187–192
Bacon FM, Watts HA (1975) Vacuum arc anode plasma 2. Collisional-radiative model and comparison with experiment. J Appl Phys 46(11):4758–4766. doi:10.1063/1.321553
Macedo FTB, Wiessner M, Hollenstein C, Kuster F, Wegener K (2016) Dependence of crater formation in dry EDM on electrical breakdown mechanism. Procedia CIRP 42:161–166. doi:10.1016/j.procir.2016.02.212
Kojima A, Natsu W, Kunieda M (2008) Spectroscopic measurement of arc plasma diameter in EDM. CIRP Ann Manuf Technol 57(1):203–207. doi:10.1016/j.cirp.2008.03.097
Kunze HJ (2009) Introduction to plasma spectroscopy. Springer, Berlin Heidelberg
Gigosos MA, Cardeñoso V (1996) New plasma diagnosis tables of hydrogen stark broadening including ion dynamics. J Phys B Atomic Mol Phys 29(20):4795
Griem HR (1997) Principles of plasma spectroscopy. Cambridge University Press
Bacon FM (1975) Vacuum arc anode plasma. I. Spectroscopic investigation. J Appl Phys 46(11):4750–4757. doi:10.1063/1.321552
Sainz A, Diaz A, Casas D, Pineda M, Cubillo F, Calzada MD (2006) Abel inversion applied to a small set of emission data from a microwave plasma. Appl Spectrosc 60(3):229–236. doi:10.1366/000370206776342706
Grissom JT, Newton JC (1974) Anode surface radiance from microsecond vacuum arcs. J Appl Phys 45(7):2885–2894. doi:10.1063/1.1663696
Miller HC (1977) Vacuum arc anode phenomena. IEEE Transactions on Plasma Science 5(3):181–196. doi:10.1109/TPS.1977.4317037
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Macedo, F.T.B., Wiessner, M., Hollenstein, C. et al. Fundamental investigation of dry electrical discharge machining (DEDM) by optical emission spectroscopy and its numerical interpretation. Int J Adv Manuf Technol 90, 3697–3709 (2017). https://doi.org/10.1007/s00170-016-9687-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00170-016-9687-9