Fundamental investigation of dry electrical discharge machining (DEDM) by optical emission spectroscopy and its numerical interpretation

Abstract

Dry electrical discharge machining (DEDM) has been developed as an alternative manufacturing process to the traditional EDM in liquid dielectric media. The absence of the liquid dielectric allows DEDM to be performed by simpler and environmentally friendlier machines. The erosion in DEDM mainly occurs due to the bombardment of the workpiece electrode surface by charged particles produced by micro electric discharges. Thus, the understanding of the fundamental properties of the micro plasma is necessary to explain the erosion mechanisms in this process. Optical emission spectroscopy of DEDM single discharges and its numerical interpretation by emission spectra simulation are developed in the present work. The hypothesis of plasmas in local thermal equilibrium (LTE) is developed, whereas the formation of an electron beam in non-LTE plasmas is also considered and briefly introduced. The simulations show that large amount of different ionic species is produced from the anode workpiece material, and the estimated electron temperature profile is peaking at the plasma centre. Moreover, hot anode spots formed on the workpiece surface due to the plasma-material interactions seem to be considerably smaller than the total plasma diameter and the respective eroded crater. These characteristics indicate that DEDM produces discharges similar to anode dominated vacuum arcs, which present properties very different from EDM discharges in liquid dielectric.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Leão FN, Pashby IR (2004) A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining. J Mater Process Technol 149(1–3):341–346. doi:10.1016/j.jmatprotec.2003.10.043

    Article  Google Scholar 

  2. 2.

    Kunieda M, Yoshida M, Taniguchi N (1997) Electrical discharge machining in gas. CIRP Ann Manuf Technol 46(1):143–146. doi:10.1016/S0007-8506(07)60794-X

    Article  Google Scholar 

  3. 3.

    ZhanBo Y, Takahashi J, Kunieda M (2004) Dry electrical discharge machining of cemented carbide. J Mater Process Technol 149(1–3):353–357. doi:10.1016/j.jmatprotec.2003.10.044

    Google Scholar 

  4. 4.

    Govindan P, Gupta A, Joshi SS, Malshe A, Rajurkar KP (2013) Single-spark analysis of removal phenomenon in magnetic field assisted dry EDM. J Mater Process Technol 213(7):1048–1058. doi:10.1016/j.jmatprotec.2013.01.016

    Article  Google Scholar 

  5. 5.

    Govindan P, Joshi SS (2010) Experimental characterization of material removal in dry electrical discharge drilling. Int J Mach Tools Manuf 50(5):431–443. doi:10.1016/j.ijmachtools.2010.02.004

    Article  Google Scholar 

  6. 6.

    Shen Y, Liu Y, Sun W, Zhang Y, Dong H, Zheng C, Ji R (2016) High-speed near dry electrical discharge machining. J Mater Process Technol 233:9–18. doi:10.1016/j.jmatprotec.2016.02.008

    Article  Google Scholar 

  7. 7.

    Kunieda M, Miyoshi Y, Takaya T, Nakajima N, ZhanBo Y, Yoshida M (2003) High speed 3D milling by dry EDM. CIRP Ann Manuf Technol 52(1):147–150. doi:10.1016/S0007-8506(07)60552-6

    Article  Google Scholar 

  8. 8.

    Saha SK, Choudhury SK (2009) Experimental investigation and empirical modeling of the dry electric discharge machining process. Int J Mach Tools Manuf 49(3–4):297–308. doi:10.1016/j.ijmachtools.2008.10.012

    Article  Google Scholar 

  9. 9.

    Roth R, Kuster F, Wegener K (2013) Influence of oxidizing gas on the stability of dry electrical discharge machining process. Procedia CIRP 6:338–343. doi:10.1016/j.procir.2013.03.029

    Article  Google Scholar 

  10. 10.

    Roth R, Balzer H, Kuster F, Wegener K (2012) Influence of the anode material on the breakdown behavior in dry electrical discharge machining. Procedia CIRP 1:639–644. doi:10.1016/j.procir.2012.05.013

    Article  Google Scholar 

  11. 11.

    Kunieda M, Takaya T, Nakano S (2004) Improvement of dry EDM characteristics using piezoelectric actuator. CIRP Ann Manuf Technol 53(1):183–186. doi:10.1016/S0007-8506(07)60674-X

    Article  Google Scholar 

  12. 12.

    Kunieda M, Furuoya S, Taniguchi N (1991) Improvement of EDM efficiency by supplying oxygen gas into gap. CIRP Ann Manuf Technol 40(1):215–218. doi:10.1016/S0007-8506(07)61971-4

    Article  Google Scholar 

  13. 13.

    Ramani V, Cassidenti ML (1985) Inert-gas electrical discharge machining. In: NASA Technical Brief NPO 15660:1985

    Google Scholar 

  14. 14.

    Zhang QH, Du R, Zhang JH, Zhang QB (2006) An investigation of ultrasonic-assisted electrical discharge machining in gas. Int J Mach Tools Manuf 46(12–13):1582–1588. doi:10.1016/j.ijmachtools.2005.09.023

    Article  Google Scholar 

  15. 15.

    Joshi S, Govindan P, Malshe A, Rajurkar K (2011) Experimental characterization of dry EDM performed in a pulsating magnetic field. CIRP Ann Manuf Technol 60(1):239–242. doi:10.1016/j.cirp.2011.03.114

    Article  Google Scholar 

  16. 16.

    Shen Y, Liu Y, Zhang Y, Dong H, Sun W, Wang X, Zheng C, Ji R (2015) High-speed dry electrical discharge machining. Int J Mach Tools Manuf 93:19–25. doi:10.1016/j.ijmachtools.2015.03.004

    Article  Google Scholar 

  17. 17.

    Tao J (2008) Investigation of dry and near-dry electrical discharge milling process. University Of Michigan

  18. 18.

    Kanmani Subbu S, Karthikeyan G, Ramkumar J, Dhamodaran S (2011) Plasma characterization of dry μ-EDM. Int J Adv Manuf Technol 56(1–4):187–195. doi:10.1007/s00170-011-3162-4

    Article  Google Scholar 

  19. 19.

    Macedo FTB, Wiessner M, Hollenstein C, Kuster F, Wegener K (2016) Investigation of the fundamentals of tool electrode wear in dry EDM. Procedia CIRP 46:55–58. doi:10.1016/j.procir.2016.03.170

    Article  Google Scholar 

  20. 20.

    MacFarlane JJ, Golovkin IE, Wang P, Woodruff PR, Pereyra NA (2007) SPECT3D—a multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output. High Energy Density Physics 3(1–2):181–190. doi:10.1016/j.hedp.2007.02.016

    Article  Google Scholar 

  21. 21.

    Descoeudres A (2006) Characterization of electrical discharge machining plasmas. EPFL

    Google Scholar 

  22. 22.

    Maradia U (2014) Meso-micro EDM. Zürich, ETH-Zürich

  23. 23.

    Loeb LB, Meek JM (1941) The mechanism of the electric spark. Stanford University Press

  24. 24.

    Raizer YP (1991) Gas discharge physics. Springer-Verlag, Berlin; New York

    Google Scholar 

  25. 25.

    Meek JM, Craggs JD (1978) Electrical breakdown of gases. Wiley

  26. 26.

    Toyota H, Zama S, Akamine Y, Matsuoka S, Hidaka K (2002) Gaseous electrical discharge characteristics in air and nitrogen at cryogenic temperature. Dielectrics and Electrical Insulation, IEEE Transactions on 9(6):891–898. doi:10.1109/TDEI.2002.1115482

    Article  Google Scholar 

  27. 27.

    Torres JM, Dhariwal RS (1999) Electric field breakdown at micrometre separations. Nanotechnology 10(1):102

    Article  Google Scholar 

  28. 28.

    Ching-Heng C, Yeh JA, Pei-Jen W (2006) Electrical breakdown phenomena for devices with micron separations. J Micromech Microeng 16(7):1366

    Article  Google Scholar 

  29. 29.

    Dhariwal RS, Torres JM, Desmulliez MPY (2000) Electric field breakdown at micrometre separations in air and nitrogen at atmospheric pressure. Science, Measurement and Technology, IEE Proceedings 147(5):261–265. doi:10.1040/ip-smt:20000506

    Article  Google Scholar 

  30. 30.

    Klas M, Matejćik Š, Radjenović B, Radmilović-Radjenović M (2011) Experimental and theoretical studies of the breakdown voltage characteristics at micrometre separations in air. EPL (Europhysics Letters) 95(3):35002

    Article  MATH  Google Scholar 

  31. 31.

    Boxman RL, Sanders DM, Martin PJ (1995) Handbook of vacuum arc science and technology: fundamentals and applications. Noyes Publications

  32. 32.

    Miller HC (1983) Vacuum-arc anode phenomena. IEEE Transactions on Plasma Science 11(2):76–89. doi:10.1109/tps.1983.4316225

    MathSciNet  Article  Google Scholar 

  33. 33.

    Jakubowski L, Sadowski MJ (2002) Hot-spots in plasma-focus discharges as intense sources of different radiation pulses. Braz J Phys 32:187–192

    Article  Google Scholar 

  34. 34.

    Bacon FM, Watts HA (1975) Vacuum arc anode plasma 2. Collisional-radiative model and comparison with experiment. J Appl Phys 46(11):4758–4766. doi:10.1063/1.321553

    Article  Google Scholar 

  35. 35.

    Macedo FTB, Wiessner M, Hollenstein C, Kuster F, Wegener K (2016) Dependence of crater formation in dry EDM on electrical breakdown mechanism. Procedia CIRP 42:161–166. doi:10.1016/j.procir.2016.02.212

    Article  Google Scholar 

  36. 36.

    Kojima A, Natsu W, Kunieda M (2008) Spectroscopic measurement of arc plasma diameter in EDM. CIRP Ann Manuf Technol 57(1):203–207. doi:10.1016/j.cirp.2008.03.097

    Article  Google Scholar 

  37. 37.

    Kunze HJ (2009) Introduction to plasma spectroscopy. Springer, Berlin Heidelberg

    Google Scholar 

  38. 38.

    Gigosos MA, Cardeñoso V (1996) New plasma diagnosis tables of hydrogen stark broadening including ion dynamics. J Phys B Atomic Mol Phys 29(20):4795

    Article  Google Scholar 

  39. 39.

    Griem HR (1997) Principles of plasma spectroscopy. Cambridge University Press

  40. 40.

    Bacon FM (1975) Vacuum arc anode plasma. I. Spectroscopic investigation. J Appl Phys 46(11):4750–4757. doi:10.1063/1.321552

    Article  Google Scholar 

  41. 41.

    Sainz A, Diaz A, Casas D, Pineda M, Cubillo F, Calzada MD (2006) Abel inversion applied to a small set of emission data from a microwave plasma. Appl Spectrosc 60(3):229–236. doi:10.1366/000370206776342706

    Article  Google Scholar 

  42. 42.

    Grissom JT, Newton JC (1974) Anode surface radiance from microsecond vacuum arcs. J Appl Phys 45(7):2885–2894. doi:10.1063/1.1663696

    Article  Google Scholar 

  43. 43.

    Miller HC (1977) Vacuum arc anode phenomena. IEEE Transactions on Plasma Science 5(3):181–196. doi:10.1109/TPS.1977.4317037

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Felipe T. B. Macedo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Macedo, F.T.B., Wiessner, M., Hollenstein, C. et al. Fundamental investigation of dry electrical discharge machining (DEDM) by optical emission spectroscopy and its numerical interpretation. Int J Adv Manuf Technol 90, 3697–3709 (2017). https://doi.org/10.1007/s00170-016-9687-9

Download citation

Keywords

  • Dry electrical discharge machining (DEDM)
  • Emission spectra simulation
  • Optical emission spectroscopy
  • Plasma in micro gaps