Fundamental investigation of dry electrical discharge machining (DEDM) by optical emission spectroscopy and its numerical interpretation

  • Felipe T. B. Macedo
  • Moritz Wiessner
  • Christoph Hollenstein
  • Paulo M. B. Esteves
  • Konrad Wegener
ORIGINAL ARTICLE
  • 108 Downloads

Abstract

Dry electrical discharge machining (DEDM) has been developed as an alternative manufacturing process to the traditional EDM in liquid dielectric media. The absence of the liquid dielectric allows DEDM to be performed by simpler and environmentally friendlier machines. The erosion in DEDM mainly occurs due to the bombardment of the workpiece electrode surface by charged particles produced by micro electric discharges. Thus, the understanding of the fundamental properties of the micro plasma is necessary to explain the erosion mechanisms in this process. Optical emission spectroscopy of DEDM single discharges and its numerical interpretation by emission spectra simulation are developed in the present work. The hypothesis of plasmas in local thermal equilibrium (LTE) is developed, whereas the formation of an electron beam in non-LTE plasmas is also considered and briefly introduced. The simulations show that large amount of different ionic species is produced from the anode workpiece material, and the estimated electron temperature profile is peaking at the plasma centre. Moreover, hot anode spots formed on the workpiece surface due to the plasma-material interactions seem to be considerably smaller than the total plasma diameter and the respective eroded crater. These characteristics indicate that DEDM produces discharges similar to anode dominated vacuum arcs, which present properties very different from EDM discharges in liquid dielectric.

Keywords

Dry electrical discharge machining (DEDM) Emission spectra simulation Optical emission spectroscopy Plasma in micro gaps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leão FN, Pashby IR (2004) A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining. J Mater Process Technol 149(1–3):341–346. doi:10.1016/j.jmatprotec.2003.10.043 CrossRefGoogle Scholar
  2. 2.
    Kunieda M, Yoshida M, Taniguchi N (1997) Electrical discharge machining in gas. CIRP Ann Manuf Technol 46(1):143–146. doi:10.1016/S0007-8506(07)60794-X CrossRefGoogle Scholar
  3. 3.
    ZhanBo Y, Takahashi J, Kunieda M (2004) Dry electrical discharge machining of cemented carbide. J Mater Process Technol 149(1–3):353–357. doi:10.1016/j.jmatprotec.2003.10.044 Google Scholar
  4. 4.
    Govindan P, Gupta A, Joshi SS, Malshe A, Rajurkar KP (2013) Single-spark analysis of removal phenomenon in magnetic field assisted dry EDM. J Mater Process Technol 213(7):1048–1058. doi:10.1016/j.jmatprotec.2013.01.016 CrossRefGoogle Scholar
  5. 5.
    Govindan P, Joshi SS (2010) Experimental characterization of material removal in dry electrical discharge drilling. Int J Mach Tools Manuf 50(5):431–443. doi:10.1016/j.ijmachtools.2010.02.004 CrossRefGoogle Scholar
  6. 6.
    Shen Y, Liu Y, Sun W, Zhang Y, Dong H, Zheng C, Ji R (2016) High-speed near dry electrical discharge machining. J Mater Process Technol 233:9–18. doi:10.1016/j.jmatprotec.2016.02.008 CrossRefGoogle Scholar
  7. 7.
    Kunieda M, Miyoshi Y, Takaya T, Nakajima N, ZhanBo Y, Yoshida M (2003) High speed 3D milling by dry EDM. CIRP Ann Manuf Technol 52(1):147–150. doi:10.1016/S0007-8506(07)60552-6 CrossRefGoogle Scholar
  8. 8.
    Saha SK, Choudhury SK (2009) Experimental investigation and empirical modeling of the dry electric discharge machining process. Int J Mach Tools Manuf 49(3–4):297–308. doi:10.1016/j.ijmachtools.2008.10.012 CrossRefGoogle Scholar
  9. 9.
    Roth R, Kuster F, Wegener K (2013) Influence of oxidizing gas on the stability of dry electrical discharge machining process. Procedia CIRP 6:338–343. doi:10.1016/j.procir.2013.03.029 CrossRefGoogle Scholar
  10. 10.
    Roth R, Balzer H, Kuster F, Wegener K (2012) Influence of the anode material on the breakdown behavior in dry electrical discharge machining. Procedia CIRP 1:639–644. doi:10.1016/j.procir.2012.05.013 CrossRefGoogle Scholar
  11. 11.
    Kunieda M, Takaya T, Nakano S (2004) Improvement of dry EDM characteristics using piezoelectric actuator. CIRP Ann Manuf Technol 53(1):183–186. doi:10.1016/S0007-8506(07)60674-X CrossRefGoogle Scholar
  12. 12.
    Kunieda M, Furuoya S, Taniguchi N (1991) Improvement of EDM efficiency by supplying oxygen gas into gap. CIRP Ann Manuf Technol 40(1):215–218. doi:10.1016/S0007-8506(07)61971-4 CrossRefGoogle Scholar
  13. 13.
    Ramani V, Cassidenti ML (1985) Inert-gas electrical discharge machining. In: NASA Technical Brief NPO 15660:1985Google Scholar
  14. 14.
    Zhang QH, Du R, Zhang JH, Zhang QB (2006) An investigation of ultrasonic-assisted electrical discharge machining in gas. Int J Mach Tools Manuf 46(12–13):1582–1588. doi:10.1016/j.ijmachtools.2005.09.023 CrossRefGoogle Scholar
  15. 15.
    Joshi S, Govindan P, Malshe A, Rajurkar K (2011) Experimental characterization of dry EDM performed in a pulsating magnetic field. CIRP Ann Manuf Technol 60(1):239–242. doi:10.1016/j.cirp.2011.03.114 CrossRefGoogle Scholar
  16. 16.
    Shen Y, Liu Y, Zhang Y, Dong H, Sun W, Wang X, Zheng C, Ji R (2015) High-speed dry electrical discharge machining. Int J Mach Tools Manuf 93:19–25. doi:10.1016/j.ijmachtools.2015.03.004 CrossRefGoogle Scholar
  17. 17.
    Tao J (2008) Investigation of dry and near-dry electrical discharge milling process. University Of MichiganGoogle Scholar
  18. 18.
    Kanmani Subbu S, Karthikeyan G, Ramkumar J, Dhamodaran S (2011) Plasma characterization of dry μ-EDM. Int J Adv Manuf Technol 56(1–4):187–195. doi:10.1007/s00170-011-3162-4 CrossRefGoogle Scholar
  19. 19.
    Macedo FTB, Wiessner M, Hollenstein C, Kuster F, Wegener K (2016) Investigation of the fundamentals of tool electrode wear in dry EDM. Procedia CIRP 46:55–58. doi:10.1016/j.procir.2016.03.170 CrossRefGoogle Scholar
  20. 20.
    MacFarlane JJ, Golovkin IE, Wang P, Woodruff PR, Pereyra NA (2007) SPECT3D—a multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output. High Energy Density Physics 3(1–2):181–190. doi:10.1016/j.hedp.2007.02.016 CrossRefGoogle Scholar
  21. 21.
    Descoeudres A (2006) Characterization of electrical discharge machining plasmas. EPFLGoogle Scholar
  22. 22.
    Maradia U (2014) Meso-micro EDM. Zürich, ETH-ZürichGoogle Scholar
  23. 23.
    Loeb LB, Meek JM (1941) The mechanism of the electric spark. Stanford University PressGoogle Scholar
  24. 24.
    Raizer YP (1991) Gas discharge physics. Springer-Verlag, Berlin; New YorkCrossRefGoogle Scholar
  25. 25.
    Meek JM, Craggs JD (1978) Electrical breakdown of gases. WileyGoogle Scholar
  26. 26.
    Toyota H, Zama S, Akamine Y, Matsuoka S, Hidaka K (2002) Gaseous electrical discharge characteristics in air and nitrogen at cryogenic temperature. Dielectrics and Electrical Insulation, IEEE Transactions on 9(6):891–898. doi:10.1109/TDEI.2002.1115482 CrossRefGoogle Scholar
  27. 27.
    Torres JM, Dhariwal RS (1999) Electric field breakdown at micrometre separations. Nanotechnology 10(1):102CrossRefGoogle Scholar
  28. 28.
    Ching-Heng C, Yeh JA, Pei-Jen W (2006) Electrical breakdown phenomena for devices with micron separations. J Micromech Microeng 16(7):1366CrossRefGoogle Scholar
  29. 29.
    Dhariwal RS, Torres JM, Desmulliez MPY (2000) Electric field breakdown at micrometre separations in air and nitrogen at atmospheric pressure. Science, Measurement and Technology, IEE Proceedings 147(5):261–265. doi:10.1040/ip-smt:20000506 CrossRefGoogle Scholar
  30. 30.
    Klas M, Matejćik Š, Radjenović B, Radmilović-Radjenović M (2011) Experimental and theoretical studies of the breakdown voltage characteristics at micrometre separations in air. EPL (Europhysics Letters) 95(3):35002CrossRefMATHGoogle Scholar
  31. 31.
    Boxman RL, Sanders DM, Martin PJ (1995) Handbook of vacuum arc science and technology: fundamentals and applications. Noyes PublicationsGoogle Scholar
  32. 32.
    Miller HC (1983) Vacuum-arc anode phenomena. IEEE Transactions on Plasma Science 11(2):76–89. doi:10.1109/tps.1983.4316225 MathSciNetCrossRefGoogle Scholar
  33. 33.
    Jakubowski L, Sadowski MJ (2002) Hot-spots in plasma-focus discharges as intense sources of different radiation pulses. Braz J Phys 32:187–192CrossRefGoogle Scholar
  34. 34.
    Bacon FM, Watts HA (1975) Vacuum arc anode plasma 2. Collisional-radiative model and comparison with experiment. J Appl Phys 46(11):4758–4766. doi:10.1063/1.321553 CrossRefGoogle Scholar
  35. 35.
    Macedo FTB, Wiessner M, Hollenstein C, Kuster F, Wegener K (2016) Dependence of crater formation in dry EDM on electrical breakdown mechanism. Procedia CIRP 42:161–166. doi:10.1016/j.procir.2016.02.212 CrossRefGoogle Scholar
  36. 36.
    Kojima A, Natsu W, Kunieda M (2008) Spectroscopic measurement of arc plasma diameter in EDM. CIRP Ann Manuf Technol 57(1):203–207. doi:10.1016/j.cirp.2008.03.097 CrossRefGoogle Scholar
  37. 37.
    Kunze HJ (2009) Introduction to plasma spectroscopy. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  38. 38.
    Gigosos MA, Cardeñoso V (1996) New plasma diagnosis tables of hydrogen stark broadening including ion dynamics. J Phys B Atomic Mol Phys 29(20):4795CrossRefGoogle Scholar
  39. 39.
    Griem HR (1997) Principles of plasma spectroscopy. Cambridge University PressGoogle Scholar
  40. 40.
    Bacon FM (1975) Vacuum arc anode plasma. I. Spectroscopic investigation. J Appl Phys 46(11):4750–4757. doi:10.1063/1.321552 CrossRefGoogle Scholar
  41. 41.
    Sainz A, Diaz A, Casas D, Pineda M, Cubillo F, Calzada MD (2006) Abel inversion applied to a small set of emission data from a microwave plasma. Appl Spectrosc 60(3):229–236. doi:10.1366/000370206776342706 CrossRefGoogle Scholar
  42. 42.
    Grissom JT, Newton JC (1974) Anode surface radiance from microsecond vacuum arcs. J Appl Phys 45(7):2885–2894. doi:10.1063/1.1663696 CrossRefGoogle Scholar
  43. 43.
    Miller HC (1977) Vacuum arc anode phenomena. IEEE Transactions on Plasma Science 5(3):181–196. doi:10.1109/TPS.1977.4317037 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Felipe T. B. Macedo
    • 1
  • Moritz Wiessner
    • 1
  • Christoph Hollenstein
  • Paulo M. B. Esteves
    • 1
  • Konrad Wegener
    • 1
  1. 1.Institute of machine tools and manufacturing (IWF)ETH ZurichZurichSwitzerland

Personalised recommendations