Intelligent system for automatic control of the process of filling the mold

  • Nedeljko Dučić
  • Ivan Milićević
  • Žarko Ćojbašić
  • Srećko ManasijevićEmail author
  • Radomir Radiša
  • Radomir Slavković
  • Miloš Božić


This paper shows fuzzy and neuro-fuzzy intelligent systems for automatic control of mold filling employed in casting plants. The concept of precision mold filling presupposes three key points in the process, i.e., precise pouring of the stream into the basin, maintaining constant level of molten metal in the basin, and finally, elimination of overflow of molten metal from the mold. The possibility of using fuzzy and neuro-fuzzy controls of mold-filling process was tested on a laboratory plant. Instead of molten metal, water was used, due to the approximate value of the Reynolds number of steel (1560–1600 °C) and water at room temperature. Fuzzy and neuro-fuzzy controls of casting process were tested through many experimental attempts which have confirmed the possibility of application of these methodologies in the control of gravity casting process.


Fuzzy logic control Neuro-fuzzy control Molten metal Simulation Casting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Terashima K (1988) Recent automatic pouring and transfer systems in foundries. Mater Process Technol 39(6):1–8Google Scholar
  2. 2.
    Lindsay W (1983) Automatic pouring and metal distribution systems. Foundry Trade J 6:151–176Google Scholar
  3. 3.
    Thielk J (1987) Using electric furnaces to store and pour treated ductile iron part 2. Mod Cast 77(11):25–27Google Scholar
  4. 4.
    Watanabe J, Yoshida K (1992) Automatic pouring equipment for casting “mel pore system. Ind Heat 29(4):19–27Google Scholar
  5. 5.
    Bex T (1992) Melting & pouring. Mod Cast, pp:26–34Google Scholar
  6. 6.
    Miske J (1979) A look at automatic metal pouring. Foundry M & T:26–43Google Scholar
  7. 7.
    Sugimoto Y, et al (2002) Liquid level control of automatic pouring robot by two-degrees of freedom control, Proceedings of the 15th IFAC World Congress, Barcelona, Spain, pp 1172–1178Google Scholar
  8. 8.
    Yoshiyuki N, et al (2005) Control of self-transfer-type automatic pouring robot with cylindrical ladle, Proceedings of the 16th IFAC World Congress, Praha, pp 1470–1476Google Scholar
  9. 9.
    Noda Y, Terashima K (2007) Modeling and flow rate control of automatic pouring system. J Robotic Mechatronics 19(2):205–2011CrossRefGoogle Scholar
  10. 10.
    Yano K, Terashima K (2010) Supervisory control of automatic pouring machine. Control Eng Practice 18:230–241CrossRefGoogle Scholar
  11. 11.
    Zadeh AL (1965) Fuzzy sets. Inform Control 8(3):338–353CrossRefzbMATHGoogle Scholar
  12. 12.
    Zadeh L (1996) Fuzzy logic equals computing with words. IEEE T Fuzzy Syst 4(2):103–111CrossRefGoogle Scholar
  13. 13.
    Zadeh L (1997) Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst 90(2):111–127MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mitra S, Hayashi Y (2000) Neuro-fuzzy rule generation: survey in soft computing framework. Neural Networks, IEEE Transactions 11(3):748–768CrossRefGoogle Scholar
  15. 15.
    Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. Systems, Man and Cybernetics, IEEE Transactions 23(3):665–685CrossRefGoogle Scholar
  16. 16.
    Azadegana A et al (2011) Fuzzy logic in manufacturing: a review of literature and a specialized application. Int J Prod Econ 132(2):258–270CrossRefGoogle Scholar
  17. 17.
    Zuperl U et al (2005) Fuzzy control strategy for an adaptive force control in end-milling. J Mater Process Technol 164–165:1472–1478CrossRefGoogle Scholar
  18. 18.
    Das A et al (2008) A rule-based fuzzy-logic approach for the measurement of manufacturing flexibility. Int J Adv Manuf Tech 38(11–12):1098–1113CrossRefGoogle Scholar
  19. 19.
    Parchami A et al (2010) An effective approach for measuring the capability of manufacturing processes. Prod Plan Control 21(3):250–257CrossRefGoogle Scholar
  20. 20.
    Shin CY, Vishnupad P (1996) Neuro-fuzzy control of complex manufacturing processes. Int J Prod Res 34(12):3291–3309CrossRefzbMATHGoogle Scholar
  21. 21.
    Petković D et al (2013) Adaptive neuro fuzzy estimation of underactuated robotic gripper contact forces. Expert Syst Appl 40(1):281–286CrossRefGoogle Scholar
  22. 22.
    Nauck D (1997) Neuro-fuzzy systems: review and prospects, In Proceedings of fifth European Congress on intelligent techniques and soft computing (EUFIT’97), pp 1044–1053Google Scholar
  23. 23.
    Abraham A (2005) Adaptation of fuzzy inference system using neural learning, In Fuzzy Systems Engineering. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  24. 24.
    Shoorehdeli MA, Teshnehlab M, Sedigh AK, Khanesar MA (2009) Identification using ANFIS with intelligent hybrid stable learning algorithm approaches and stability analysis of training methods. Applied Soft Comput 9(2):2009CrossRefGoogle Scholar
  25. 25.
    Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle River, NJGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Nedeljko Dučić
    • 1
  • Ivan Milićević
    • 1
  • Žarko Ćojbašić
    • 2
  • Srećko Manasijević
    • 3
    Email author
  • Radomir Radiša
    • 3
  • Radomir Slavković
    • 1
  • Miloš Božić
    • 1
  1. 1.Faculty of Technical Sciences ČačakUniversity of KragujevacČačakSerbia
  2. 2.Faculty of Mechanical EngineeringUniversity of NišNišSerbia
  3. 3.Lola Institute Ltd.BelgradeSerbia

Personalised recommendations