Skip to main content
Log in

A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, we present a new approach to categorize the wear of cutting tools used in edge profile milling processes. It is based on machine learning and computer vision techniques, specifically using B-ORCHIZ, a novel shape-based descriptor computed from the wear region image. A new Insert dataset with 212 images of tool wear has been created to evaluate our approach. It contains two subsets: one with images of the main cutting edge and the other one with the edges that converge to it (called Insert-C and Insert-I, respectively). The experiments were conducted trying to discriminate between two (low-high) and three (low-medium-high) different wear levels, and the classification stage was carried out using a support vector machine (SVM). Results show that B-ORCHIZ outperforms other shape descriptors (aZIBO and ZMEG) achieving accuracy values between 80.24 and 88.46 % in the different scenarios evaluated. Moreover, a hierarchical cluster analysis was performed, offering prototype images for wear levels, which may help researchers and technicians to understand how the wear process evolves. These results show a very promising opportunity for wear monitoring automation in edge profile milling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malekian M, Park SS, Jun MB (2009) Tool wear monitoring of micro-milling operations. J Mater Process Technol 209(10):4903–4914. doi:10.1016/j.jmatprotec.2009.01.013

    Article  Google Scholar 

  2. Wang G, Yang Y, Xie Q, Zhang Y (2014) Force based tool wear monitoring system for milling process based on relevance vector machine. Adv Eng Softw 71(1):46–51. doi:10.1016/j.advengsoft.2014.02.002 10.1016/j.advengsoft.2014.02.002

    Article  Google Scholar 

  3. Azmi A (2015) Monitoring of tool wear using measured machining forces and neuro-fuzzy modelling approaches during machining of GFRP composites. Adv Eng Softw 82:53–64. doi:10.1016/j.advengsoft.2014.12.010

    Article  Google Scholar 

  4. Kaya B, Oysu C, Ertunc HM (2011) Force-torque based on-line tool wear estimation system for CNC milling of inconel 718 using neural networks. Adv Eng Softw 42(3):76–84. doi:10.1016/j.advengsoft.2010.12.002

    Article  Google Scholar 

  5. Li X (2002) A brief review: acoustic emission method for tool wear monitoring during turning. Int J Mach Tools Manuf 42(2):157–165. doi:10.1016/S0890-6955(01)00108-0

    Article  Google Scholar 

  6. Rao KV, Murthy B, Rao NM (2014) Prediction of cutting tool wear, surface roughness and vibration of work piece in boring of AISI 316 steel with artificial neural network. Measurement 51(0):63–70. doi:10.1016/j.measurement.2014.01.024

    Google Scholar 

  7. Scheffer C, Heyns P (2001) Wear monitoring in turning operations using vibration and strain measurements. Mech Syst Signal Process 15(6):1185–1202. doi:10.1006/mssp.2000.1364

    Article  Google Scholar 

  8. Loizou J, Tian W, Robertson J, Camelio J (2015) Automated wear characterization for broaching tools based on machine vision systems. J Manuf Syst 37, Part 2:558–563. doi:10.1016/j.jmsy.2015.04.005 10.1016/j.jmsy.2015.04.005

    Article  Google Scholar 

  9. Kurada S, Bradley C (1997) A review of machine vision sensors for tool condition monitoring. Comput Ind 34(1):55–72. doi:10.1016/S0166-3615(96)00075-9

    Article  Google Scholar 

  10. Dutta S, Pal S, Mukhopadhyay S, Sen R (2013) Appication of digital image processing in tool condition monitoring: A review. CIRP J Manuf Sci Technol 6(3):212–232. doi:10.1016/j.cirpj.2013.02.005

    Article  Google Scholar 

  11. Zhang C, Zhang J (2013) On-line tool wear measurement for ball-end milling cutter based on machine vision. Comput Ind 64(6):708–719. doi:10.1016/j.compind.2013.03.010

    Article  Google Scholar 

  12. Chethan Y, Ravindra H, Gowda YK, Kumar GM (2014) Parametric optimization in drilling en-8 tool steel and drill wear monitoring using machine vision applied with taguchi method. In: International Conference on Advances in Manufacturing and Materials Engineering, ICAMME 2014. doi:10.1016/j.mspro.2014.07.463, vol 5, pp 1442–1449

  13. Datta A, Dutta S, Pal S, Sen R (2013) Progressive cutting tool wear detection from machined surface images using voronoi tessellation method. J Mater Process Technol 213(12):2339–2349. doi:10.1016/j.jmatprotec.2013.07.008

    Article  Google Scholar 

  14. Dutta S, Pal SK, Sen R (2016) Progressive tool flank wear monitoring by applying discrete wavelet transform on turned surface images. Measurement 77:388–401. doi:10.1016/j.measurement.2015.09.028 10.1016/j.measurement.2015.09.028

    Article  Google Scholar 

  15. Shu X, Wu XJ (2011) A novel contour descriptor for 2d shape matching and its application to image retrieval. Image Vis Comput 29(4):286–294. doi:10.1016/j.imavis.2010.11.001

    Article  Google Scholar 

  16. Laiche N, Larabi S, Ladraa F, Khadraoui A (2014) Curve normalization for shape retrieval. Signal Process Image Commun 29(4):556–571. doi:10.1016/j.image.2014.01.009

    Article  Google Scholar 

  17. Barreiro J, Castejón M, Alegre E, Hernández L (2008) Use of descriptors based on moments from digital images for tool wear monitoring. Int J Mach Tools Manuf 48(9):1005–1013. doi:10.1016/j.ijmachtools.2008.01.005

    Article  Google Scholar 

  18. Singh C, Pooja (2012) An effective image retrieval using the fusion of global and local transforms based features. Opt Laser Technol 44:2249–2259. doi:10.1016/j.optlastec.2012.02.030

    Article  Google Scholar 

  19. Anuar FM, Setchi R, kun Lai Y (2013) Trademark image retrieval using an integrated shape descriptor. Expert Systems with Applications 40(1):105–121. doi:10.1016/j.eswa.2012.07.031

    Article  Google Scholar 

  20. García-Olalla O, Alegre E, Fernández-Robles L, Malm P, Bengtsson E (2015) Acrosome integrity assessment of boar spermatozoa images using an early fusion of texture and contour descriptors. Comput Methods Prog Biomed 120(1):49–64. doi:10.1016/j.cmpb.2015.03.005

    Article  Google Scholar 

  21. García-Ordás M, Alegre E, González-Castro V, García-Ordás D (2014) aZIBO: a new descriptor based in shape moments and rotational invariant features. In: 2014 22nd International Conference on Pattern Recognition (ICPR). doi:10.1109/ICPR.2014.415, pp 2395–2400

  22. Zhang G, To S, Xiao G (2014) Novel tool wear monitoring method in ultra-precision raster milling using cutting chips. Precis Eng 38(3):555–560. doi:10.1016/j.precisioneng.2014.02.004

  23. Cadorin N, Zitoune R (2015) Wear signature on hole defects as a function of cutting tool material for drilling 3d interlock composite. In: 20th International Conference on Wear Materials. doi:10.1016/j.wear.2015.01.019, vol 332333, pp 742–751

  24. Belongie S, Malik J, Puzicha J (2001) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24:509–522. doi:10.1109/34.993558

    Article  Google Scholar 

  25. Fernández-Robles L, Azzopardi G, Alegre E, Petkov N (2015) Cutting edge localisation in an edge profile milling head. Springer International Publishing, Cham, pp 336– 347

    Google Scholar 

  26. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244. doi:10.1080/01621459.1963.10500845

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Teresa García-Ordás.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Ordás, M.T., Alegre, E., González-Castro, V. et al. A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques. Int J Adv Manuf Technol 90, 1947–1961 (2017). https://doi.org/10.1007/s00170-016-9541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9541-0

Keywords

Navigation