Study on suppressing cutting force fluctuations based on chip loads for turning optical freeform surfaces

  • Xiaoqin Zhou
  • Rongqi Wang
  • Qiang LiuEmail author


The optics with micro-structures and freeform surfaces, which have a broader range of applications, can be generally fabricated by the single-point diamond turning (SPDT) with fast tool servo. But the cutting chatters caused by the cutting force fluctuations (CFFs) will greatly deteriorate the processing qualities like forming accuracy and surface finish; thus, this paper will build an improved chip load model (CLM) to simply characterize the cutting forces. Based on the modified CLM, two types of turning approaches with constant chip load (CCL) are developed to suppress CFFs, but which have some serious limitations in their practical applications. As an improvement, a type of simple-yet-effective virtual tool radius (VTR) method is further developed for practically generating the pre-turning toolpaths of the blank surfaces, which can ensure the uniform cutting allowances in finish turning. Taking two typical surfaces as examples, the proposed VTR method is analytically compared to the traditional processes in terms of chip load, and their resistances to the undulations of chip loads are also examined in detail. Finally, the VTR approach and traditional process are experimentally investigated by turning the sinusoidal radial surface on brass cylinders, and their cutting forces are measured for validating the CFF rejection capacities.


Cutting chatter Cutting force fluctuation Chip load Diamond turning Optical freeform surface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Evans CJ, Bryan JB (1999) Structured”, “textured” or “engineered” surfaces. CIRP Annals-Manufacturing Technology 48(2):541–556. doi: 10.1016/S0007-8506(07)63233-8 CrossRefGoogle Scholar
  2. 2.
    Bruzzone AAG, Costa HL, Lonardo PM, Lucca DA (2008) Advances in engineered surfaces for functional performance. CIRP Annals-Manufacturing Technology 57(2):750–769. doi: 10.1016/j.cirp.2008.09.003 CrossRefGoogle Scholar
  3. 3.
    Brecher C, Lange S, Merz M, Niehaus F, Wenzel C, Winterschladen M, Weck M (2006) NURBS based ultra-precision free-form machining. CIRP Ann Manuf Technol 55(1):547–550. doi: 10.1016/S0007-8506(07)60479-X CrossRefGoogle Scholar
  4. 4.
    Patterson SR, Magrab EB (1985) Design and testing of a fast tool servo for diamond turning. Precis Eng 7(3):123–128. doi: 10.1016/0141-6359(85)90030-3 CrossRefGoogle Scholar
  5. 5.
    Kong LB, Cheung CF, Kwok TC (2014) Theoretical and experimental analysis of the effect of error motions on surface generation in fast tool servo machining. Precis Eng 38(2):428–438. doi: 10.1016/j.precisioneng.2013.12.010 CrossRefGoogle Scholar
  6. 6.
    Kim H-S, Kim E-J, Song B-S (2004) Diamond turning of large off-axis aspheric mirrors using a fast tool servo with on-machine measurement. J Mater Process Technol 146(3):349–355. doi: 10.1016/j.jmatprotec.2003.11.028 CrossRefGoogle Scholar
  7. 7.
    Ludwick SJ, Chargin DA, Calzaretta JA, Trumper DL (1999) Design of a rotary fast tool servo for ophthalmic lens fabrication. Precis Eng 23(4):253–259. doi: 10.1016/S0141-6359(99)00017-3 CrossRefGoogle Scholar
  8. 8.
    Rao BC, Shin YC (1999) A comprehensive dynamic cutting force model for chatter prediction in turning. Int J Mach Tools Manuf 39(10):1631–1654. doi: 10.1016/S0890-6955(99)00007-3 CrossRefGoogle Scholar
  9. 9.
    Tarng YS, Wang YS (1994) A new adaptive controller for constant turning force. Int J Adv Manuf Technol 9(4):211–216. doi: 10.1007/bf01751118 CrossRefGoogle Scholar
  10. 10.
    Lin C-M, Tarn-Sea L Robust controllers design of constant turning force feedback control system. In: Industrial Automation and Control: Emerging Technologies, 1995., International IEEE/IAS Conference on, 22-27 May 1995 1995. pp 637–643. doi: 10.1109/IACET.1995.527633
  11. 11.
    Ding T, Zhang S, Wang Y, Zhu X (2010) Empirical models and optimal cutting parameters for cutting forces and surface roughness in hard milling of AISI H13 steel. Int J Adv Manuf Technol 51(1–4):45–55. doi: 10.1007/s00170-010-2598-2 CrossRefGoogle Scholar
  12. 12.
    Tang L, Cheng Z, Huang J, Gao C, Chang W (2015) Empirical models for cutting forces in finish dry hard turning of hardened tool steel at different hardness levels. Int J Adv Manuf Technol 76 (1):691–703. doi: 10.1007/s00170-014-6291-8
  13. 13.
    Newby G, Venkatachalam S, Liang SY (2007) Empirical analysis of cutting force constants in micro-end-milling operations. J Mater Process Technol 192–193(0):41–47. doi: 10.1016/j.jmatprotec.2007.04.026 CrossRefGoogle Scholar
  14. 14.
    Fnides B, Yallese MA, Mabrouki T, Rigal JF (2011) Application of response surface methodology for determining cutting force model in turning hardened AISI H11 hot work tool steel. Sadhana 36(1):109–123. doi: 10.1007/s12046-011-0007-7 CrossRefGoogle Scholar
  15. 15.
    Shaw, MC (2005) Metal cutting principles (2nd Edition). Oxford University Press,Google Scholar
  16. 16.
    Armarego, EJA, Brown RH (1969) The machining of metals. Prentice-HallGoogle Scholar
  17. 17.
    Song W (2006) Development of predictive force models for classical orthogonal and oblique cutting and turning operations incorporating tool flank wear effects. Queensland University of technologyGoogle Scholar
  18. 18.
    Dan. L (2012) A constant chip-load turning apporach to generating freeform optical surfaces M.S., Jilin UniversityGoogle Scholar
  19. 19.
    Tarag YS, Hwang TS (1994) An investigation of the specific cutting force and its direction factors in turning. Comput Struct 53(4):937–945. doi: 10.1016/0045-7949(94)90381-6 CrossRefGoogle Scholar
  20. 20.
    Lee BY, Tarng YS (1994) Prediction of specific cutting force and cutting force ratio in turning. J Mater Process Technol 41(1):71–82. doi: 10.1016/0924-0136(94)90177-5 CrossRefGoogle Scholar
  21. 21.
    Lee S-Y, Lee J (2000) Specific cutting force coefficients modeling of end milling by neural network. KSME International Journal 14(6):622–632. doi: 10.1007/bf03184438 CrossRefGoogle Scholar
  22. 22.
    Jayaram S, Kapoor SG, DeVor RE (2001) Estimation of the specific cutting pressures for mechanistic cutting force models. Int J Mach Tools Manuf 41(2):265–281. doi: 10.1016/S0890-6955(00)00076-6 CrossRefGoogle Scholar
  23. 23.
    Liow JL, Frye U (2010) Surfaces machined by micro end-mills at constant chip load. Key Eng Mater 443:232–237CrossRefGoogle Scholar
  24. 24.
    Imani BM, El-Mounayri H, Hosseini, SA (2007) Analytical Chip Load Prediction for Rough End Mills. 2nd Tehran International Congress on Manufacturing Engineering-TICME2007. December 10–13, 2007, Tehran, Iran.Google Scholar
  25. 25.
    Virginija G, Vytautas O (2012) Modeling and simulation of a chip load acting on a single milling tool insert. Journal of Mechanical Engineering 58(12):716–723CrossRefGoogle Scholar
  26. 26.
    Jung Y-H, Kim J-S, Hwang S-M (2001) Chip load prediction in ball-end milling. J Mater Process Technol 111(1–3):250–255. doi: 10.1016/S0924-0136(01)00528-3 CrossRefGoogle Scholar
  27. 27.
    Ozturk B, Lazoglu I (2006) Machining of free-form surfaces. Part I: analytical chip load. Int J Mach Tools Manuf 46(7–8):728–735. doi: 10.1016/j.ijmachtools.2005.07.038 CrossRefGoogle Scholar
  28. 28.
    Cardi AA (2009) On the development of a dynamic cutting force model with application to regenerative chatter in turning. Ph.D., Georgia Institute of Technology, Ann ArborGoogle Scholar
  29. 29.
    Zhang XD, Fang FZ, Wang HB, Wei GS, XT H (2009) Ultra-precision machining of sinusoidal surfaces using the cylindrical coordinate method. J Micromech Microeng 19(5):054004CrossRefGoogle Scholar
  30. 30.
    Brinksmeier E, Riemer O, Osmer J (2008) Tool path generation for ultra-precision machining of free-form surfaces. Prod Eng Res Devel 2(3):241–246. doi: 10.1007/s11740-008-0086-4 CrossRefGoogle Scholar
  31. 31.
    Yu D, Gan S, Wong Y, Hong G, Rahman M, Yao J (2012) Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces. Int J Adv Manuf Technol 63(9–12):1137–1152. doi: 10.1007/s00170-012-3964-z CrossRefGoogle Scholar
  32. 32.
    Yang P, Qian X (2008) Adaptive slicing of moving least squares surfaces: toward direct manufacturing of point set surfaces. J Comput Inf Sci Eng 8(3). doi: 10.1115/1.2955481
  33. 33.
    Cakmakci O, Moore B, Foroosh H, Rolland JP (2008) Optimal local shape description for rotationally non-symmetric optical surface design and analysis. Opt Express 16(3):1583–1589. doi: 10.1364/oe.16.001583 CrossRefGoogle Scholar
  34. 34.
    Zhang D, Yang P, Qian X (2008) Adaptive NC path generation from massive point data with bounded error. J Manuf Sci Eng 131(1):011001–011001. doi: 10.1115/1.3010710 CrossRefGoogle Scholar
  35. 35.
    Yu DP, Wong YS, Hong GS (2011) Ultraprecision machining of micro-structured functional surfaces on brittle materials. Journal of Micromechanics & Microengineering 21(9):95011–95021 95011CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.School of Mechanical Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations