Skip to main content
Log in

Prediction of surface roughness ratio of polishing blade of abrasive cloth wheel and optimization of processing parameters

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Abrasive cloth wheel is significantly flexible at high-speed rotation and could realize adaptive micro-surface contact polishing of the blade of aviation engines. To reduce surface roughness and improve the surface integrity and mechanical property of the blade of aviation engine, this study determined the primary and secondary processing parameters by using orthogonal test and range method. Results show a significant linear correlation between blade surface roughness before and after polishing. A range of polishing parameters for orthogonal central combination test was determined based on the tendency chart. A roughness ratio prediction model was established based on the orthogonal central combination test results. This model was verified significant by variance and diversity analyses. The polishing parameters were optimized using response surface method. Finally, polishing experiment using a blisk confirmed the reliability of the established prediction model and the optimized parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ho W-H, Tsai J-T, Lin B-T, Chou J-H (2009) Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm. Expert Syst Appl 36:3216–3222. doi:10.1016/j.eswa.2008.01.051

    Article  Google Scholar 

  2. Huang H, Gong ZM, Chen XQ, Zhou L (2002) Robotic grinding and polishing for turbine-vane overhaul. J Mater Process Technol 127:140–145. doi:10.1016/S0924-0136(02)00114-0

    Article  Google Scholar 

  3. Duan JH, Shi YY, Li XBZJ (2011) Adaptive polishing for blisk by flexible grinding head. Acta Aeronaut Astronaut Sin 32:934–940 doi: 1000-6893(2011)05-0934-07

    Google Scholar 

  4. Bigerelle M, Gautier A, Hagege B, et al. (2009) Roughness characteristic length scales of belt finished surface. J Mater Process Technol 209:6103–6116. doi:10.1016/j.jmatprotec.2009.04.013

    Article  Google Scholar 

  5. Wang G, Wang Y, Zhang L, et al. (2014) Development and polishing process of a mobile robot finishing large mold surface. Mach Sci Technol 18:603–625. doi:10.1080/10910344.2014.955372

    Article  Google Scholar 

  6. Márquez JJ, Pérez JM, Ríos J, Vizán A (2005) Process modeling for robotic polishing. J Mater Process Technol 159:69–82. doi:10.1016/j.jmatprotec.2004.01.045

    Article  Google Scholar 

  7. Chaves-Jacob J, Linares JM, Sprauel JM (2015) Control of the contact force in a pre-polishing operation of free-form surfaces realised with a 5-axis CNC machine. CIRP Ann - Manuf Technol 64:309–312. doi:10.1016/j.cirp.2015.04.008

    Article  Google Scholar 

  8. Ri P, Zhen-Zhong W, Chun-Jin W, et al. (2014) Research on control optimization for bonnet polishing system. Int J Precis Eng Manuf 15:483–488. doi:10.1007/s12541-014-0361-6

    Article  Google Scholar 

  9. Zeng S, Blunt L (2014) Experimental investigation and analytical modelling of the effects of process parameters on material removal rate for bonnet polishing of cobalt chrome alloy. Precis Eng 38:348–355. doi:10.1016/j.precisioneng.2013.11.005

    Article  Google Scholar 

  10. Ji SM, Jin MS, Zhang X, Zhang L, Zhang YDYJ (2007) Novel gasbag polishing technique for free form mold. J Chem Inf Model 43:2–6. doi:10.1017/CBO9781107415324.004

    Google Scholar 

  11. Wang YQ, Yin SH, Huang H, et al. (2015) Magnetorheological polishing using a permanent magnetic yoke with straight air gap for ultra-smooth surface planarization. Precis Eng 40:309–317. doi:10.1016/j.precisioneng.2014.11.001

    Article  Google Scholar 

  12. Lee ES, Lee SG, Choi WK, Choi SG (2013) Study on the effect of various machining speeds on the wafer polishing process. J Mech Sci Technol 27:3155–3160. doi:10.1007/s12206-013-0836-x

    Article  Google Scholar 

  13. Zhong ZW (2008) Recent advances in polishing of advanced materials. Mater Manuf Process 23:449–456. doi:10.1080/10426910802103486

    Article  Google Scholar 

  14. Givi M, Fadaei Tehrani A, Mohammadi A (2012) Polishing of the aluminum sheets with magnetic abrasive finishing method. Int J Adv Manuf Technol 61:989–998. doi:10.1007/s00170-011-3753-0

    Article  Google Scholar 

  15. Li M, Lyu B, Yuan J, et al. (2015) Shear-thickening polishing method. Int J Mach Tools Manuf 94:88–99. doi:10.1016/j.ijmachtools.2015.04.010

    Article  Google Scholar 

  16. Zhao T, Shi Y, Lin X, et al. (2014) Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine. Int J Adv Manuf Technol 74:653–663. doi:10.1007/s00170-014-6020-3

    Article  Google Scholar 

  17. Zhsao P, Shi Y (2013) Composite adaptive control of belt polishing force for aero-engine blade. Chinese J Mech Eng 26:988–996. doi:10.3901/CJME.2013.05.988

    Article  Google Scholar 

  18. Sun Y, Giblin DJ, Kazerounian K (2009) Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques. Robot Comput Integr Manuf 25:204–210. doi:10.1016/j.rcim.2007.11.005

    Article  Google Scholar 

  19. Lin XJ, Yang Y, Wu G, Gao Y, Chen Y, Liu MLM (2015) The research of flexible polishing technology of five-axis NC abrasive belt for blade surface. Acta Aeronaut Astronaut Sin 36:2074–2082. doi:10.7527/S1000-6893.2014.0203

    Google Scholar 

  20. Duan JH, Shi YY, Zhang JF, Dong TLX (2012) Flexible polishing technology for blade of aviation engine. Acta Aeronaut Astronaut Sin 33:573–578 doi: cnki:11-1929/v.20111014.1505.004

    Google Scholar 

  21. Yong Y, Kulkarni SS, Rys M, Lei S (2012) Development of a surface roughness model in end milling of nHAP using PCD insert. Ceram Int 38:6865–6871. doi:10.1016/j.ceramint.2012.05.087

    Article  Google Scholar 

  22. Hanafi I, Khamlichi A, Cabrera FM, Nuñez López PJ (2012) Prediction of surface roughness in turning of PEEK cf30 by using an artificial neural network. J Chinese Inst Ind Eng 29:337–347. doi:10.1080/10170669.2012.702690

    Google Scholar 

  23. Singh D, Rao PV (2007) A surface roughness prediction model for hard turning process. Int J Adv Manuf Technol 32:1115–1124. doi:10.1007/s00170-006-0429-2

    Article  Google Scholar 

  24. Bigerelle M, Hagege B, El Mansori M (2008) Mechanical modelling of micro-scale abrasion in superfinish belt grinding. Tribol Int 41:992–1001. doi:10.1016/j.triboint.2008.03.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbo Huai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huai, W., Tang, H., Shi, Y. et al. Prediction of surface roughness ratio of polishing blade of abrasive cloth wheel and optimization of processing parameters. Int J Adv Manuf Technol 90, 699–708 (2017). https://doi.org/10.1007/s00170-016-9397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9397-3

Keywords

Navigation