Advertisement

Work hardening behavior of Ti/Al-based metal intermetallic laminates

  • N. Thiyaneshwaran
  • K. Sivaprasad
  • B. Ravisankar
ORIGINAL ARTICLE

Abstract

Titanium- and aluminum-based in situ metal intermetallic laminate (MIL) composites were prepared by solid-state diffusion bonding. The transition joints between Ti/Al were made at temperatures 550 and 575 °C with different bonding time under uniaxial pressure of 4 MPa under high vacuum to achieve MILs with different volume fraction of intermetallic phase. The phase and elemental analyses revealed the presence of only TiAl3 intermetallic layer formed between Ti/Al diffusion couple. Also, the layer thickness of the intermetallic phase increased with the increase in both bonding time and temperature. Compression tests were conducted on these MILs at room temperature both parallel and perpendicular to intermetallic layers. The mechanical properties and the failure mode of these MILs were studied based on the volume fraction of intermetallic phase. Results showed that the strength along the parallel direction of the MILs were much higher than the perpendicular direction. The failure mechanism of the MILs also varied based on the volume fraction of the intermetallic phases. Fractography revealed that with high intermetallic content, cracks were formed only on the intermetallic layer irrespective of loading direction. MILs containing intermetallic phase fraction exhibited better work hardening rate and the hardening rate behavior varied with the loading orientation.

Keywords

Metal intermetallic laminates Diffusion bonding Work hardening behavior Compression test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doychak J (1992) Metal- and intermetallic-matrix composites for aerospace propulsion and power systems. JOM 44(6):46–51. doi: 10.1007/BF03222256 CrossRefGoogle Scholar
  2. 2.
    Stoloff NS, Liu CT, Deevi SC (2000) Emerging applications of intermetallics. Intermetallics 8:1313–1320. doi: 10.1016/S0966-9795(00)00077-7 CrossRefGoogle Scholar
  3. 3.
    Yamaguchi M, Inui H, Ito K (2000) High temperature structural intermetallics. Acta Mater 48:307–322. doi: 10.1016/S1359-6454(99)00301-8 CrossRefGoogle Scholar
  4. 4.
    Vecchio KS (2005) Synthetic multifunctional metal-intermetallic laminate composites. JOM 57(3):25–31. doi: 10.1007/s11837-005-0229-4 CrossRefGoogle Scholar
  5. 5.
    Xu L, Cui YY, Hao YL, Yang R (2006) Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples. Mater Sci Eng A 435–436:638–647. doi: 10.1016/j.msea.2006.07.077 CrossRefGoogle Scholar
  6. 6.
    Chaudhari GP, Acoff VL (2010) Titanium aluminide sheets made using roll bonding and reaction annealing. Intermetallics 18:472–478. doi: 10.1016/j.intermet.2009.09.008 CrossRefGoogle Scholar
  7. 7.
    AlHazaa A, Khan TI, Haq I (2010) Transient liquid phase (TLP) bonding of Al7075 to Ti–6Al–4 V alloy. Mater Charact 61:312–317. doi: 10.1016/j.matchar.2009.12.014 CrossRefGoogle Scholar
  8. 8.
    Bataev IA, Bataev AA, Mali VI, Pavlyukova DV, Yartsev PS, Golovin ED (2012) Nucleation and growth of titanium aluminide in an explosion welded laminate composite. Phys Met Metallogr 113(10):947–956. doi: 10.1134/S0031918X12070022 CrossRefGoogle Scholar
  9. 9.
    Lazurenko DV (2015) Metal-intermetallic laminate Ti-Al3Ti composites produced by spark plasma sintering of titanium and aluminum foils enclosed in titanium shells. Metall Mater Trans A 46(9):4326–4334. doi: 10.1007/s11661-015-3002-5 CrossRefGoogle Scholar
  10. 10.
    Norouzi E, Atapour M, Shamanian M, Allafchian A (2016) Effect of bonding temperature on the microstructure and mechanical properties of Ti-6Al-4V to AISI 304 transient liquid phase bonded joint. Mater Des. doi: 10.1016/j.matdes.2016.03.101 Google Scholar
  11. 11.
    Qin B, Sheng GM, Huang JW, Zhou B, Qiu SY, Li C (2006) Phase transformation diffusion bonding of titanium alloy with stainless steel. Mater Charact 56:32–38. doi: 10.1016/j.matchar.2005.09.015 CrossRefGoogle Scholar
  12. 12.
    Aydin K, Kaya Y, Kahraman N (2012) Experimental study of diffusion welding/bonding of titanium to copper. Mater Des 12:356–368. doi: 10.1016/j.matdes.2012.01.026 CrossRefGoogle Scholar
  13. 13.
    Konieczny M (2012) Microstructural characterisation and mechanical response of laminated Ni intermetallic composites synthesised using Ni sheets and Al foils. Mater Charact 70:117–124. doi: 10.1016/j.matchar.2012.05.007 CrossRefGoogle Scholar
  14. 14.
    Kenevisi MS, Mousavi Khoie SM (2012) An investigation on microstructure and mechanical properties of Al7075 to Ti–6Al–4V transient liquid phase (TLP) bonded joint. Mater Des 38:19–25. doi: 10.1016/j.matdes.2012.01.046 CrossRefGoogle Scholar
  15. 15.
    Fronczek DM, Wojewoda-Budka J, Chulist R, Sypien A, Korneva A, Szulc Z, Schell N, Zieba P (2016) Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Mater Des 91:80–89. doi: 10.1016/j.matdes.2015.11.087 CrossRefGoogle Scholar
  16. 16.
    Van Loo FJJ, Rieck CD (1973) Diffusion in the titanium-aluminium system—I. Interdiffusion between solid Al and Ti or Ti-Al alloys. Acta Metall 21(1):61–71. doi: 10.1016/0001-6160(73)90220-4 CrossRefGoogle Scholar
  17. 17.
    Bataev IA, Bataev AA, Mali VI, Pavliukova DV (2012) Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing. Mater Des 35:225–234. doi: 10.1016/j.matdes.2011.09.030 CrossRefGoogle Scholar
  18. 18.
    Jiangwei R, Yajiang L, Tao F (2002) Microstructure characteristics in the interface zone of Ti/Al diffusion bonding. Mater Lett 56:647–652. doi: 10.1016/S0167-577X(02)00570-0 CrossRefGoogle Scholar
  19. 19.
    Mirjalili M, Soltanieh M, Matsuura K, Ohno M (2013) On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple. Intermetallics 32:297–302. doi: 10.1016/j.intermet.2012.08.017 CrossRefGoogle Scholar
  20. 20.
    Peng LM, Wang JH, Li H, Zhao JH, He LH (2005) Synthesis and microstructural characterization of Ti–Al3Ti metal–intermetallic laminate (MIL) composites. Scr Mater 52:243–248. doi: 10.1016/j.scriptamat.2004.09.010 CrossRefGoogle Scholar
  21. 21.
    Kenevisi MS, Mousavi Khoie SM, Alaei M (2013) Microstructural evaluation and mechanical properties of the diffusion bonded Al/Ti alloys joint. Mech Mater 64:69–75. doi: 10.1016/j.mechmat.2013.04.011 CrossRefGoogle Scholar
  22. 22.
    Lazurenko DV, Bataev IA, Mali VI, Bataev AA, Maliutina IN, Lozhkin VS, Esikov MA, Jorge AMJ (2016) Explosively welded multilayer Ti-Al composites: structure and transformation during heat treatment. Mater Des. doi: 10.1016/j.matdes.2016.04.037 Google Scholar
  23. 23.
    Fan M, Domblesky J, Jin K, Qin L, Cui S, Guo X, Kim N, Tao J (2016) Effect of original layer thicknesses on the interface bonding and mechanical properties of Ti-Al laminate composites. Mater Des. doi: 10.1016/j.matdes.2016.03.102 Google Scholar
  24. 24.
    Li T, Jiang F, Olevsky EA, Vecchio KS, Meyers MA (2007) Damage evolution in Ti6Al4V–Al3Ti metalintermetallic laminate composites. Mater Sci Eng A 443(1–2):1–15. doi: 10.1016/j.msea.2006.05.037 Google Scholar
  25. 25.
    Price RD, Jiang F, Kulin RM, Vecchio KS (2011) Effects of ductile phase volume fraction on the mechanical properties of Ti–Al3Ti metal-intermetallic laminate (MIL) composites. Mater Sci Eng A 528(7–8):3134–3146. doi: 10.1016/j.msea.2010.12.087 CrossRefGoogle Scholar
  26. 26.
    Kattner UR, Lin JC, Chang YA (1992) Thermodynamic assessment and calculation of the Ti-AI system. Metallurgical Transactions A 23(8):2081–2090. doi: 10.1007/BF02646001 CrossRefGoogle Scholar
  27. 27.
    Kocks UF (1976) Laws of work-hardening and low-temperature creep. J Eng Mater Technol 98(1):76–85. doi: 10.1115/1.3443340 CrossRefGoogle Scholar
  28. 28.
    Mecking H, Kocks UF (1981) Kinetics of flow and strain-hardening. Acta Metall 29(11):1865–1875. doi: 10.1016/0001-6160(81)90112-7 CrossRefGoogle Scholar
  29. 29.
    Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48:171–273. doi: 10.1016/S0079-6425(02)000038 CrossRefGoogle Scholar
  30. 30.
    Chen M, Ma E, Hemker KV, Sheng H, Wang Y, Cheng X (2003) Deformation twinning in nanocrystalline aluminum. Science 300(5623):1275–1277. doi: 10.1126/science.1083727 CrossRefGoogle Scholar
  31. 31.
    Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT (2003) Deformation twins in nanocrystalline Al. Appl Phys Lett 83(24):5062–5064. doi: 10.1063/1.1633975 CrossRefGoogle Scholar
  32. 32.
    Zhao F, Wang L, Fan D, Bie BX, Zhou XM, Suo T, Li YL, Chen MW, Liu CL, Qi ML, Zhu MH, Luo SN (2016) Macrodeformation twins in single-crystal aluminum. Phys Rev Lett 116:075501. doi: 10.1103/PhysRevLett.116.075501 CrossRefGoogle Scholar
  33. 33.
    Asgari S, El-Danaf E, Kalidindi SR, Doherty RD (1997) Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy FCC alloys that form deformation twins. Metall Mater Trans A 28(9):1781–1795. doi: 10.1007/s11661-997-0109-3 CrossRefGoogle Scholar
  34. 34.
    Salem AA, Kalidindi SR, Doherty RD (2002) Strain hardening regimes and microstructure evolution during large strain compression of high purity titanium. Scr Mater 46(6):419–423. doi: 10.1016/S1359-6462(02)00005-2 CrossRefGoogle Scholar
  35. 35.
    Ahn K, Huh H, Yoon J (2013) Strain hardening model of pure titanium considering effects of deformation twinning. Met Mater Int 19(4):749–758. doi: 10.1007/s12540-013-4014-6 CrossRefGoogle Scholar
  36. 36.
    Salem AA, Kalidindi SR, Doherty RD (2003) Strain hardening of titanium: role of deformation twinning. Acta Mater 51(14):4225–4237. doi: 10.1016/S1359-6454(03)00239-8 CrossRefGoogle Scholar
  37. 37.
    Salem AA, Kalidindi SR, Doherty RD, Semiatin SL (2006) Strain hardening due to deformation twinning in α-titanium: mechanisms. Metall Mater Trans A 37(1):259–268. doi: 10.1007/s11661-006-0171-2 CrossRefGoogle Scholar
  38. 38.
    Caceres CH, Blake AH (2007) On the strain hardening behaviour of magnesium at room temperature. Material science and Engineering A 462(1–2):193–196. doi: 10.1016/j.msea.2005.12.113 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • N. Thiyaneshwaran
    • 1
  • K. Sivaprasad
    • 1
  • B. Ravisankar
    • 1
  1. 1.Advanced Materials Processing Laboratory, Department of Metallurgical and Materials EngineeringNational Institute of Technology TiruchirappalliTiruchirappalliIndia

Personalised recommendations