Skip to main content

Advertisement

Log in

Work hardening behavior of Ti/Al-based metal intermetallic laminates

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Titanium- and aluminum-based in situ metal intermetallic laminate (MIL) composites were prepared by solid-state diffusion bonding. The transition joints between Ti/Al were made at temperatures 550 and 575 °C with different bonding time under uniaxial pressure of 4 MPa under high vacuum to achieve MILs with different volume fraction of intermetallic phase. The phase and elemental analyses revealed the presence of only TiAl3 intermetallic layer formed between Ti/Al diffusion couple. Also, the layer thickness of the intermetallic phase increased with the increase in both bonding time and temperature. Compression tests were conducted on these MILs at room temperature both parallel and perpendicular to intermetallic layers. The mechanical properties and the failure mode of these MILs were studied based on the volume fraction of intermetallic phase. Results showed that the strength along the parallel direction of the MILs were much higher than the perpendicular direction. The failure mechanism of the MILs also varied based on the volume fraction of the intermetallic phases. Fractography revealed that with high intermetallic content, cracks were formed only on the intermetallic layer irrespective of loading direction. MILs containing intermetallic phase fraction exhibited better work hardening rate and the hardening rate behavior varied with the loading orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doychak J (1992) Metal- and intermetallic-matrix composites for aerospace propulsion and power systems. JOM 44(6):46–51. doi:10.1007/BF03222256

    Article  Google Scholar 

  2. Stoloff NS, Liu CT, Deevi SC (2000) Emerging applications of intermetallics. Intermetallics 8:1313–1320. doi:10.1016/S0966-9795(00)00077-7

    Article  Google Scholar 

  3. Yamaguchi M, Inui H, Ito K (2000) High temperature structural intermetallics. Acta Mater 48:307–322. doi:10.1016/S1359-6454(99)00301-8

    Article  Google Scholar 

  4. Vecchio KS (2005) Synthetic multifunctional metal-intermetallic laminate composites. JOM 57(3):25–31. doi:10.1007/s11837-005-0229-4

    Article  Google Scholar 

  5. Xu L, Cui YY, Hao YL, Yang R (2006) Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples. Mater Sci Eng A 435–436:638–647. doi:10.1016/j.msea.2006.07.077

    Article  Google Scholar 

  6. Chaudhari GP, Acoff VL (2010) Titanium aluminide sheets made using roll bonding and reaction annealing. Intermetallics 18:472–478. doi:10.1016/j.intermet.2009.09.008

    Article  Google Scholar 

  7. AlHazaa A, Khan TI, Haq I (2010) Transient liquid phase (TLP) bonding of Al7075 to Ti–6Al–4 V alloy. Mater Charact 61:312–317. doi:10.1016/j.matchar.2009.12.014

    Article  Google Scholar 

  8. Bataev IA, Bataev AA, Mali VI, Pavlyukova DV, Yartsev PS, Golovin ED (2012) Nucleation and growth of titanium aluminide in an explosion welded laminate composite. Phys Met Metallogr 113(10):947–956. doi:10.1134/S0031918X12070022

    Article  Google Scholar 

  9. Lazurenko DV (2015) Metal-intermetallic laminate Ti-Al3Ti composites produced by spark plasma sintering of titanium and aluminum foils enclosed in titanium shells. Metall Mater Trans A 46(9):4326–4334. doi:10.1007/s11661-015-3002-5

    Article  Google Scholar 

  10. Norouzi E, Atapour M, Shamanian M, Allafchian A (2016) Effect of bonding temperature on the microstructure and mechanical properties of Ti-6Al-4V to AISI 304 transient liquid phase bonded joint. Mater Des. doi:10.1016/j.matdes.2016.03.101

    Google Scholar 

  11. Qin B, Sheng GM, Huang JW, Zhou B, Qiu SY, Li C (2006) Phase transformation diffusion bonding of titanium alloy with stainless steel. Mater Charact 56:32–38. doi:10.1016/j.matchar.2005.09.015

    Article  Google Scholar 

  12. Aydin K, Kaya Y, Kahraman N (2012) Experimental study of diffusion welding/bonding of titanium to copper. Mater Des 12:356–368. doi:10.1016/j.matdes.2012.01.026

    Article  Google Scholar 

  13. Konieczny M (2012) Microstructural characterisation and mechanical response of laminated Ni intermetallic composites synthesised using Ni sheets and Al foils. Mater Charact 70:117–124. doi:10.1016/j.matchar.2012.05.007

    Article  Google Scholar 

  14. Kenevisi MS, Mousavi Khoie SM (2012) An investigation on microstructure and mechanical properties of Al7075 to Ti–6Al–4V transient liquid phase (TLP) bonded joint. Mater Des 38:19–25. doi:10.1016/j.matdes.2012.01.046

    Article  Google Scholar 

  15. Fronczek DM, Wojewoda-Budka J, Chulist R, Sypien A, Korneva A, Szulc Z, Schell N, Zieba P (2016) Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Mater Des 91:80–89. doi:10.1016/j.matdes.2015.11.087

    Article  Google Scholar 

  16. Van Loo FJJ, Rieck CD (1973) Diffusion in the titanium-aluminium system—I. Interdiffusion between solid Al and Ti or Ti-Al alloys. Acta Metall 21(1):61–71. doi:10.1016/0001-6160(73)90220-4

    Article  Google Scholar 

  17. Bataev IA, Bataev AA, Mali VI, Pavliukova DV (2012) Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing. Mater Des 35:225–234. doi:10.1016/j.matdes.2011.09.030

    Article  Google Scholar 

  18. Jiangwei R, Yajiang L, Tao F (2002) Microstructure characteristics in the interface zone of Ti/Al diffusion bonding. Mater Lett 56:647–652. doi:10.1016/S0167-577X(02)00570-0

    Article  Google Scholar 

  19. Mirjalili M, Soltanieh M, Matsuura K, Ohno M (2013) On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple. Intermetallics 32:297–302. doi:10.1016/j.intermet.2012.08.017

    Article  Google Scholar 

  20. Peng LM, Wang JH, Li H, Zhao JH, He LH (2005) Synthesis and microstructural characterization of Ti–Al3Ti metal–intermetallic laminate (MIL) composites. Scr Mater 52:243–248. doi:10.1016/j.scriptamat.2004.09.010

    Article  Google Scholar 

  21. Kenevisi MS, Mousavi Khoie SM, Alaei M (2013) Microstructural evaluation and mechanical properties of the diffusion bonded Al/Ti alloys joint. Mech Mater 64:69–75. doi:10.1016/j.mechmat.2013.04.011

    Article  Google Scholar 

  22. Lazurenko DV, Bataev IA, Mali VI, Bataev AA, Maliutina IN, Lozhkin VS, Esikov MA, Jorge AMJ (2016) Explosively welded multilayer Ti-Al composites: structure and transformation during heat treatment. Mater Des. doi:10.1016/j.matdes.2016.04.037

    Google Scholar 

  23. Fan M, Domblesky J, Jin K, Qin L, Cui S, Guo X, Kim N, Tao J (2016) Effect of original layer thicknesses on the interface bonding and mechanical properties of Ti-Al laminate composites. Mater Des. doi:10.1016/j.matdes.2016.03.102

    Google Scholar 

  24. Li T, Jiang F, Olevsky EA, Vecchio KS, Meyers MA (2007) Damage evolution in Ti6Al4V–Al3Ti metalintermetallic laminate composites. Mater Sci Eng A 443(1–2):1–15. doi:10.1016/j.msea.2006.05.037

    Google Scholar 

  25. Price RD, Jiang F, Kulin RM, Vecchio KS (2011) Effects of ductile phase volume fraction on the mechanical properties of Ti–Al3Ti metal-intermetallic laminate (MIL) composites. Mater Sci Eng A 528(7–8):3134–3146. doi:10.1016/j.msea.2010.12.087

    Article  Google Scholar 

  26. Kattner UR, Lin JC, Chang YA (1992) Thermodynamic assessment and calculation of the Ti-AI system. Metallurgical Transactions A 23(8):2081–2090. doi:10.1007/BF02646001

    Article  Google Scholar 

  27. Kocks UF (1976) Laws of work-hardening and low-temperature creep. J Eng Mater Technol 98(1):76–85. doi:10.1115/1.3443340

    Article  Google Scholar 

  28. Mecking H, Kocks UF (1981) Kinetics of flow and strain-hardening. Acta Metall 29(11):1865–1875. doi:10.1016/0001-6160(81)90112-7

    Article  Google Scholar 

  29. Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48:171–273. doi:10.1016/S0079-6425(02)000038

    Article  Google Scholar 

  30. Chen M, Ma E, Hemker KV, Sheng H, Wang Y, Cheng X (2003) Deformation twinning in nanocrystalline aluminum. Science 300(5623):1275–1277. doi:10.1126/science.1083727

    Article  Google Scholar 

  31. Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT (2003) Deformation twins in nanocrystalline Al. Appl Phys Lett 83(24):5062–5064. doi:10.1063/1.1633975

    Article  Google Scholar 

  32. Zhao F, Wang L, Fan D, Bie BX, Zhou XM, Suo T, Li YL, Chen MW, Liu CL, Qi ML, Zhu MH, Luo SN (2016) Macrodeformation twins in single-crystal aluminum. Phys Rev Lett 116:075501. doi:10.1103/PhysRevLett.116.075501

    Article  Google Scholar 

  33. Asgari S, El-Danaf E, Kalidindi SR, Doherty RD (1997) Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy FCC alloys that form deformation twins. Metall Mater Trans A 28(9):1781–1795. doi:10.1007/s11661-997-0109-3

    Article  Google Scholar 

  34. Salem AA, Kalidindi SR, Doherty RD (2002) Strain hardening regimes and microstructure evolution during large strain compression of high purity titanium. Scr Mater 46(6):419–423. doi:10.1016/S1359-6462(02)00005-2

    Article  Google Scholar 

  35. Ahn K, Huh H, Yoon J (2013) Strain hardening model of pure titanium considering effects of deformation twinning. Met Mater Int 19(4):749–758. doi:10.1007/s12540-013-4014-6

    Article  Google Scholar 

  36. Salem AA, Kalidindi SR, Doherty RD (2003) Strain hardening of titanium: role of deformation twinning. Acta Mater 51(14):4225–4237. doi:10.1016/S1359-6454(03)00239-8

    Article  Google Scholar 

  37. Salem AA, Kalidindi SR, Doherty RD, Semiatin SL (2006) Strain hardening due to deformation twinning in α-titanium: mechanisms. Metall Mater Trans A 37(1):259–268. doi:10.1007/s11661-006-0171-2

    Article  Google Scholar 

  38. Caceres CH, Blake AH (2007) On the strain hardening behaviour of magnesium at room temperature. Material science and Engineering A 462(1–2):193–196. doi:10.1016/j.msea.2005.12.113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sivaprasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiyaneshwaran, N., Sivaprasad, K. & Ravisankar, B. Work hardening behavior of Ti/Al-based metal intermetallic laminates. Int J Adv Manuf Technol 93, 361–374 (2017). https://doi.org/10.1007/s00170-016-9382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9382-x

Keywords

Navigation