Advertisement

Mono-objective and multi-objective optimization of performance parameters in high pressure coolant assisted turning of Ti-6Al-4V

  • Mozammel MiaEmail author
  • Md Awal Khan
  • Saadman Sakib Rahman
  • Nikhil Ranjan Dhar
ORIGINAL ARTICLE

Abstract

This paper presents the optimization of cutting forces, average surface roughness, cutting temperature, and chip reduction coefficient in turning of Ti-6Al-4V alloy under dry and high pressure coolant (HPC) that is applied at the rake and flank surfaces simultaneously. The experimental design plan was conducted by the full factorial parameter orientation. The optimization has been conducted in two ways: firstly, by using signal-to-noise ratio-based Taguchi method as mono-objective optimization; secondly, by using gray relational analysis integrated with Taguchi method as multi-objective optimization. In either method, the cutting speed, feed rate, and cutting condition were considered as the inputs to the optimization. The mono-objective optimization concluded that the 156 m/min cutting speed and 0.12 mm/rev feed rate when run under HPC optimized the cutting forces and roughness, and when operated under dry optimized chip reduction coefficient, the cutting temperature was minimized at 78 m/min and 0.12 mm/rev feed rate. The multi-objective optimization concluded that Ti alloy turning system is optimized at 156 m/min cutting speed and 0.12 mm/rev feed rate under HPC.

Keywords

Turning of Ti-6Al-4V High pressure coolant Taguchi method Gray-Taguchi method Mono-objective optimization Multi-objective optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouzid L, Boutabba S, Yallese MA, Belhadi S, Girardin F (2014) Simultaneous optimization of surface roughness and material removal rate for turning of X20Cr13 stainless steel. Int J Adv Manuf Technol 74(5–8):879–891CrossRefGoogle Scholar
  2. 2.
    Ramesh S, Karunamoorthy L, Palanikumar K (2012) Measurement and analysis of surface roughness in turning of aerospace titanium alloy (gr5). Measurement 45(5):1266–1276CrossRefGoogle Scholar
  3. 3.
    Prasanna J, Karunamoorthy L, Raman MV, Prashanth S, Chordia DR (2014) Optimization of process parameters of small hole dry drilling in Ti–6Al–4V using Taguchi and grey relational analysis. Measurement 48:346–354CrossRefGoogle Scholar
  4. 4.
    Escamilla-Salazar IG, Torres-Treviño LM, González-Ortíz B, Zambrano PC (2013) Machining optimization using swarm intelligence in titanium (6Al 4V) alloy. Int J Adv Manuf Technol 67(1–4):535–544CrossRefGoogle Scholar
  5. 5.
    Hashmi KH, Zakria G, Raza MB, Khalil S (2015) Optimization of process parameters for high speed machining of Ti-6Al-4V using response surface methodology. The International Journal of Advanced Manufacturing Technology:1–10 (doi: 10.1007/s00170-015-8057-3)
  6. 6.
    Li J, Yang X, Ren C, Chen G, Wang Y (2015) Multiobjective optimization of cutting parameters in Ti-6Al-4V milling process using nondominated sorting genetic algorithm-II. Int J Adv Manuf Technol 76(5–8):941–953CrossRefGoogle Scholar
  7. 7.
    Hasçalık A, Çaydaş U (2008) Optimization of turning parameters for surface roughness and tool life based on the Taguchi method. Int J Adv Manuf Technol 38(9–10):896–903CrossRefGoogle Scholar
  8. 8.
    Thepsonthi T, Özel T (2012) Multi-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 63(9–12):903–914CrossRefGoogle Scholar
  9. 9.
    Zain AM, Haron H, Sharif S (2010) Simulated annealing to estimate the optimal cutting conditions for minimizing surface roughness in end milling Ti-6Al-4V. Mach Sci Technol 14(1):43–62CrossRefGoogle Scholar
  10. 10.
    Sarıkaya M, Güllü A (2015) Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25. J Clean Prod 91:347–357CrossRefGoogle Scholar
  11. 11.
    Pusavec F, Deshpande A, Yang S, M’Saoubi R, Kopac J, Dillon OW, Jawahir I (2015) Sustainable machining of high temperature nickel alloy–Inconel 718: part 2–chip breakability and optimization. J Clean Prod 87:941–952CrossRefGoogle Scholar
  12. 12.
    Pawade RS, Joshi SS (2011) Multi-objective optimization of surface roughness and cutting forces in high-speed turning of Inconel 718 using Taguchi grey relational analysis (TGRA). Int J Adv Manuf Technol 56(1–4):47–62CrossRefGoogle Scholar
  13. 13.
    Cetin MH, Ozcelik B, Kuram E, Demirbas E (2011) Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. J Clean Prod 19(17):2049–2056CrossRefGoogle Scholar
  14. 14.
    Kuram E, Ozcelik B, Bayramoglu M, Demirbas E, Simsek BT (2013) Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments. J Clean Prod 42:159–166CrossRefGoogle Scholar
  15. 15.
    Jiang Z, Zhou F, Zhang H, Wang Y, Sutherland JW (2015) Optimization of machining parameters considering minimum cutting fluid consumption. J Clean Prod 108:183–191CrossRefGoogle Scholar
  16. 16.
    Mia M, Dhar NR (2016) Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method. The International Journal of Advanced Manufacturing Technology:1–15 (doi: 10.1007/s00170-016-8810-2)
  17. 17.
    Asiltürk I, Neşeli S (2012) Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis. Measurement 45(4):785–794CrossRefGoogle Scholar
  18. 18.
    Debnath S, Reddy MM, Yi QS (2016) Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method. Measurement 78:111–119CrossRefGoogle Scholar
  19. 19.
    Bashir MA, Mia M, Dhar NR (2016) Investigations on surface milling of hardened AISI 4140 steel with pulse jet MQL applicator. Journal of the Institution of Engineers (India): Series C (doi: 10.1007/s40032-016-0277-2)
  20. 20.
    Al Bashir M, Mia M, Dhar NR (2016) Effect of pulse Jet MQL in surface milling of hardened steel. J Mech Eng Sci 45(2):67–72Google Scholar
  21. 21.
    Paul S, Dhar N, Chattopadhyay A (2001) Beneficial effects of cryogenic cooling over dry and wet machining on tool wear and surface finish in turning AISI 1060 steel. J Mater Process Technol 116(1):44–48CrossRefGoogle Scholar
  22. 22.
    Mia M, Dhar NR (2015) Effect of high pressure coolant jet on cutting temperature, tool wear and surface finish in turning hardened (hrc 48) steel. J Mech Eng Sci 45(1):1–6Google Scholar
  23. 23.
    Mia M, Dhar NR (2016) Response surface and neural network based predictive models of cutting temperature in hard turning. J Adv Res. doi: 10.1016/j.jare.2016.05.004 Google Scholar
  24. 24.
    Pusavec F, Deshpande A, Yang S, M’Saoubi R, Kopac J, Dillon OW, Jawahir I (2014) Sustainable machining of high temperature nickel alloy–Inconel 718: part 1—predictive performance models. J Clean Prod 81:255–269CrossRefGoogle Scholar
  25. 25.
    Kang Y, Zheng C (2013) Mathematical modelling of chip thickness in micro-end-milling: a Fourier modelling. Appl Math Model 37(6):4208–4223CrossRefGoogle Scholar
  26. 26.
    Buchkremer S, Klocke F, Lung D (2015) Finite-element-analysis of the relationship between chip geometry and stress triaxiality distribution in the chip breakage location of metal cutting operations. Simul Model Pract Theory 55:10–26CrossRefGoogle Scholar
  27. 27.
    Asiltürk I, Akkuş H (2011) Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method. Measurement 44(9):1697–1704Google Scholar
  28. 28.
    Bhattacharya A, Das S, Majumder P, Batish A (2009) Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA. Prod Eng 3(1):31–40CrossRefGoogle Scholar
  29. 29.
    Ye G, Chen Y, Xue S, Dai L (2014) Critical cutting speed for onset of serrated chip flow in high speed machining. Int J Mach Tools Manuf 86:18–33CrossRefGoogle Scholar
  30. 30.
    Chiappini E, Tirelli S, Albertelli P, Strano M, Monno M (2014) On the mechanics of chip formation in Ti–6Al–4V turning with spindle speed variation. Int J Mach Tools Manuf 77:16–26CrossRefGoogle Scholar
  31. 31.
    Mia M, Al Bashir M, Khan MA, Dhar NR (2016) Optimization of MQL flow rate for minimum cutting force and surface roughness in end milling of hardened steel (HRC 40). The International Journal of Advanced Manufacturing Technology:1–16 (doi: 10.1007/s00170-016-9080-8)
  32. 32.
    Kuram E, Ozcelik B (2013) Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill. Measurement 46(6):1849–1864CrossRefGoogle Scholar
  33. 33.
    Bouacha K, Yallese MA, Khamel S, Belhadi S (2014) Analysis and optimization of hard turning operation using cubic boron nitride tool. Int J Refract Met Hard Mater 45:160–178CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Mozammel Mia
    • 1
    Email author
  • Md Awal Khan
    • 2
  • Saadman Sakib Rahman
    • 1
  • Nikhil Ranjan Dhar
    • 3
  1. 1.Mechanical and Production EngineeringAhsanullah University of Science and TechnologyDhakaBangladesh
  2. 2.Industrial and Production EngineeringMilitary Institute of Science and TechnologyDhakaBangladesh
  3. 3.Industrial and Production EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh

Personalised recommendations