Skip to main content
Log in

Structural and martensitic transformation of MnNiSn shape memory alloys

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ferromagnetic shape memory alloys are characterized by both the structural austenite to martensite transformation and also by the magnetic transition from ferromagnetic to paramagnetic. The set of properties makes them candidates for use in several applications such as sensors, actuators, or magnetic refrigeration systems. Among the Heusler-type alloys that exhibit this behavior, the most studied system is the Ni–Mn–Ga. However, to overcome the high cost of Gallium and the generally low martensitic transformation temperature, the search for Ga-free alloys has been recently attempted, particularly, by introducing Sn. The martensitic transformation and the solidification structures of Mn50Ni50−x Sn x (x = 7, 8.7 and 10.5) ribbons prepared by melt-spinning were investigated by means of scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. While the As-spun alloys Mn50Ni43Sn7 and Mn50Ni41.3Sn8.7 displayed a single-phase (14-M monoclinic martensite) structure at room temperature, the As-spun and Mn50Ni39.5Sn10.5 displayed a single-phase cubic Heusler L21. The martensitic transformation temperatures were noted to decrease with the increase of Sn concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sunol JJ, Escoda L, Hernando B, Sanchez LIamazares JL, Prida VM (2009) Structural behavior of Ni-Mn-(In, Sn) Heusler melt spun ribbons. J ESOMAT 02031

  2. Krenke T, Acet M, Wassermann EF, Moya X, Manosa L, Planes A (2005) Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys. J Phys Rev B 72:014412

    Article  Google Scholar 

  3. Fukushima K, Sano K, Kanomata T, Nishihara H, Furutani Y, Shishido T, et al. (2009) Phase diagram of Fe-substituted Ni–Mn–Sn shape memory alloys. J Scripta Mater 61:813–816

    Article  Google Scholar 

  4. Sanchez-Llamazares JL, Sanchez T, Santos JD, Pérez MJ, Sanchez ML, Hernando B, et al. (2008) Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons. J Appl Phys Lett 92:012513

    Article  Google Scholar 

  5. Xuan HC, Xie KX, Wang DH, Han ZD, Zhang CL, Gu BX, et al. (2008) Effect of annealing on the martensitic transformation and magnetocaloric effect in Ni44.1Mn44.2Sn11.7 ribbons. Appl Phys Lett 92:242506

    Article  Google Scholar 

  6. Anantharman TR, Suryanarayana C (1987) Rapidly solidified metals: a technological overview; Trans Tech Publications, Aedermannsdorf Switzerland 260

  7. Hernando B, Sanchez Llamazares JL, Prida VM, Baldomir D, Serantes D, Ilyn M, et al. (2009) Magnetocaloric effect in preferentially textured Mn50Ni40In10 melt spun ribbons. J Appl Phys Lett 94:222502

    Article  Google Scholar 

  8. Santos JD, Sanchez T, Alvarez P, Sanchez ML, Sanchez Llamazares JL, Hernando B (2008) Microstructure and magnetic properties of Ni50Mn37Sn13 Heusler alloy ribbons. J Appl Phys 07B326:103

    Google Scholar 

  9. Manosa L, Moya X, Planes A, Gutfleisch O, Lyubina J, Barrio M, Tamarit JL, Aksoy S, Krenke T, Acet M (2008) Effects of hydrostatic pressure on the magnetism and martensitic transition of Ni-Mn-In magnetic superelastic alloys. J Appl Phys Lett 92:012515

    Article  Google Scholar 

  10. Wang DH, Zhang CL, Han ZD, Xuan HC, Gu BX, Du YW (2008) Large magnetic entropy changes and magnetoresistance in Ni45Mn42Cr2Sn11 alloy. J Appl Phys 103:033901

    Article  Google Scholar 

  11. Krenke T, Duman E, Acet M, Moya X, Manosa L, Planes A (2007) Effect of Co and Fe on the inverse magnetocaloric properties of Ni-Mn-Sn. J Appl Phys 102:033903

    Article  Google Scholar 

  12. Bachaga T, Daly R, Sunol JJ, Saurina J, Escoda L, Legarreta LG, Hernando B, Khitouni M (2015) Effects of Co additions on the martensitic transformation and magnetic properties of Ni–Mn–Sn shape memoryalloys. J Supercond Nov Magn 28:3087–3092

    Article  Google Scholar 

  13. Wang DH, Zhang CL, Xian HC, Han ZD, Zhang JR, Tang SL, Gu BX, Du YW (2007) The study of low-field positive and negative magnetic entropy changes in Ni43Mn46−xCuxSn11 alloys. J Appl Phys 102:013909

    Article  Google Scholar 

  14. Moya X, Manosa L, Planes A, Krenke T, Acet M, Wassermann EF (2006) Lattice dynamics of Ni–Mn–Al Heusler alloys. J Materials science and engineering: A 481-482:227–230

    Article  Google Scholar 

  15. Yuhasz WM, Schlagel DL, Xing Q, McCallum RW, Lograsso TA (2010) Metastability of ferromagnetic Ni–Mn–Sn Heusler alloys. J Alloys and Compounds 492:681–684

    Article  Google Scholar 

  16. Krenke T, Moya X, Aksoy S, Acet M, Entel P, Manosa L, et al. (2007) Electronic aspects of the martensitic transition in Ni–Mn based Heusler alloys. J Magn Magn Mater 310:2788–2789

    Article  Google Scholar 

  17. Bachaga T, Daly R, Khitouni M, Escoda L, Saurina J, Suñol JJ (2015) Thermal and structural analysis of Mn49.3Ni43.7Sn7.0 Heusler alloy ribbons. Entropy 17:646–657

    Article  Google Scholar 

  18. Lutterotti L, MAUD CPD Newsletter, IUCr (2000) 24

  19. Coll R, Escoda L, Saurina J, Sanchez-Llamazares JL, Hernando B, Sunol JJ (2010) Martensitic transformation in Mn–Ni–Sn Heusler alloys. J Therm Anal Calorim 99:905–909

    Article  Google Scholar 

  20. Wu Z, Liu Z, Yang H, Liu Y, Wu G (2011) Martensitic and magnetic transformation behaviours in Mn50Ni42−x Sn8Co x polycrystalline alloys. J Phys D Appl Phys 44:385403

    Article  Google Scholar 

  21. Zeng H, Wu D, Xue S, Frenzel J, Eggeler G, Zhai Q (2011) Martensitic transformation in rapidly solidified Heusler Ni 49Mn39Sn12 ribbons. J Acta Materialia 59:5692–5699

    Article  Google Scholar 

  22. Kaufman L, Hullert M (1992) Thermodynamics of martensite transformation. In: Olson GB, Owen WS (eds) Martensite, ASM International Cambridge, pp. 41–58

    Google Scholar 

  23. Hernando B, Sanchez-Llamazares JL, Santos JD, Escoda L, Sunol JJ, Varga R, et al. (2008) Thermal and magnetic field-induced martensite-austenite transition in Ni50.3Mn35.3Sn14.4 ribbons. J Appl Phys Lett 92:042504

    Article  Google Scholar 

  24. Planes A, Manosa L, Acet M (2009) Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J Phys Condens Matter 21:233201

    Article  Google Scholar 

  25. Sanchez-Alarcos V, Recarte V, Perez-Landazabal JI, Gomez-Polo C, Rodriguez-Velamazan JA (2012) Role of magnetism on the martensitic transformation in Ni–Mn-based magnetic shape memory alloys. J Acta Materialia 60:459–468

    Article  Google Scholar 

  26. Sharmaa J, Suresh KG (2015) Investigation of multifunctional properties of Mn50Ni40-xCoxSn10 (x = 0-6) Heusler alloys. J Alloys Compd 620:329–336

    Article  Google Scholar 

  27. Han Z, Chen X, Zhang Y, Chen J, Qian B, Jiang X, Wang D, Du Y (2012) Martensitic transformation and magnetocaloric effect in Mn–Ni–Nb–Sn shape memory alloys: the effect of 4d transition-metal doping. J alloys and compounds 515:114–118

    Article  Google Scholar 

  28. Wu Z, Liu Z, Yang H, Liu Y, Wu G (2011) Effect of Co addition on martensitic phase transformation and magnetic properties of Mn50Ni40-xIn10Cox polycrystalline alloys. J Intermetallics 19:1839–1848

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khitouni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekik, H., Krifa, M., Bachaga, T. et al. Structural and martensitic transformation of MnNiSn shape memory alloys. Int J Adv Manuf Technol 90, 291–298 (2017). https://doi.org/10.1007/s00170-016-9365-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9365-y

Keywords

Navigation