Advertisement

Electro-thermo-mechanical contact model for bulk metal forming under application of electrical resistance heating

  • Michael Terhorst
  • Oksana Ozhoga-MaslovskajaEmail author
  • Daniel Trauth
  • Anton Shirobokov
  • Patrick Mattfeld
  • Mareike Solf
  • Fritz Klocke
ORIGINAL ARTICLE
  • 178 Downloads

Abstract

Tools and workpieces in bulk metal forming processes such as electro-assisted upsetting or hybridized solid forward extrusion are subjected to electrical and thermo-mechanical loads. Existing electric contact models like the one of Holm do not regard the complex electro-thermo-mechanical interactions in the contact area between tool components and workpiece. Based on experimental as well as numerical analyses, this work introduces a new electro-thermo-mechanical contact model that accounts for electro-thermo-mechanical load profiles. The load profiles consist of mechanical loads that are typical for bulk metal forming processes. Therefore, it allows accounting for the influence of surface smoothing and lubrication expulsion on electric and thermal contact parameters. Upsetting experiments were performed in order to analyze the influence of lubrication on surface smoothing. All experiments were executed using cylindrical Cf53 workpieces, which were shot peened and lubricated with BERUFORGE 190. Pressure-dependent surface characterization profiles were derived and implemented in the model. The elaborated model of the electro-thermo-mechanical contact is coupled with Abaqus Software by means of user-defined thermal and electrical contact behavior. The resistance heating experiments were performed on the same workpieces to experimentally define the heating time and reached temperature. The numerical simulations of the performed resistance heating tests are used to verify the thermo-electrical part of the model. The mechanical part of the model is validated by means of electro-assisted upsetting tests data reported in the literature.

Keywords

Bulk metal forming Electro-assisted upsetting Electro-thermo-mechanical contact model Surface smoothing Lubrication expulsion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Suttan F, Fortanier E (2010) Elektrostauchen bietet ein breites Anwendungspotenzial. MM MaschinenmarktGoogle Scholar
  2. 2.
    Lasco Umformtechnik GmbH (ed) (2012) Elektro-Stauchmaschinen. Aggregate für die MassivumformungGoogle Scholar
  3. 3.
    Steblyuk V Yavorski V (1988) Semihot extrusion with electric contact heating. Soviet Forging and Bulk Stamping Technology: 1–4Google Scholar
  4. 4.
    Terhorst M, Klocke F, Shirobokov A, Mattfeld P, Oehler O (ed) (2014) Electrically isolating and wear resistant tool coating for the hybridized warm solid forward extrusion, 1. Aufl. Proceedings of 7th Forming Technology Forum Warm and Hot Forming. University of Twente, Twente, the NetherlandsGoogle Scholar
  5. 5.
    Terhorst M, Feuerhack A, Trauth D, Klocke F (2015) Extension of the normalized Cockcroft and Latham criterion with temperature-dependent critical damage values for predicting chevron cracks in solid forward extrusion. Int J Mat Form. doi: 10.1007/s12289-015-1231-1 Google Scholar
  6. 6.
    Kobayashi T, Mihara Y (ed) (2014) Numerical simulation of nugget formation in spot weldingGoogle Scholar
  7. 7.
    Feulvarch E, Robin V, Bergheau JM (2006) Resistance spot welding process: experimental and numerical modelling of the weld growth mechanisms with consideration to contact conditions. Numer Heat Tr A-Appl 49Google Scholar
  8. 8.
    Kim HK, Lee SH, Choi H (2015) Evaluation of contact heat transfer coefficient and phase transformation during hot stamping of a hat-type part. Materials 8Google Scholar
  9. 9.
    Bunget CJ, Salandro WA, Laine M (2013) Thermomechanical modeling sensitivity analysis of electrically assisted froming. Proc Ins Mech Eng, B J Eng Manuf (0)Google Scholar
  10. 10.
    Bunget CJ, Salandro WA, Laine M (2011) Evaluation of lubricants for electrically-assisted forming. Proc Inst Mech Eng, B J Eng Manuf (225)Google Scholar
  11. 11.
    Perkin TA, Kronenberger TJ, Roth JT (2006) Metallic forging using electrical flow as an alternative to warm/hot working. J Manuf Sci Eng (129)Google Scholar
  12. 12.
    Kronenberger TJ, Johnson DH, Roth JT (2009) Coupled multifield finite element analysis model of upsetting under an applied direct current. J Manuf Sci Eng 131(3):31003. doi: 10.1115/1.3090833 CrossRefGoogle Scholar
  13. 13.
    Holm R (1958) Elektrische Kontakte / Electric contacts handbook. Springer, Berlin Heidelberg, Berlin, HeidelbergCrossRefGoogle Scholar
  14. 14.
    Popov V (2009) Kontaktmechanik und Reibung. Springer, Berlin Heidelberg, Berlin, HeidelbergzbMATHGoogle Scholar
  15. 15.
    Baehr HD, Stephan K (2004) Wärme- und Stoffübertragung. Springer, Berlin Heidelberg, Berlin, HeidelbergCrossRefGoogle Scholar
  16. 16.
    Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R Soc A 295(1442):300–319. doi: 10.1098/rspa.1966.0242 CrossRefGoogle Scholar
  17. 17.
    Mattfeld P (2014) Tribologie der zinkphosphatfreien Kaltmassivumformung. Apprimus Wissenschaftsverlag, AachenGoogle Scholar
  18. 18.
    Hol J (2013) Multi-scale friction modeling for sheet metal forming. University of Twente, EnschedeGoogle Scholar
  19. 19.
    Scientific Forming Technologies Corporation (2014) DEFORMGoogle Scholar
  20. 20.
    Terhorst M (2015) Solid forward extrusion hybridized with direct resistance heating. Ergebnisse aus der Produktionstechnik, 2015, band 48. Apprimus Verlag, AachenGoogle Scholar
  21. 21.
    Altan T, Oh SI, Gegel HL (1983) Metal forming: fundamentals and applications. ASM series in metal processing, vol 1. American Society for Metals, Metals Park, OhioGoogle Scholar
  22. 22.
    Altan T, Ngaile G, Shen G (eds) (2004) Cold and hot forging: fundamentals and applications. ASM International, Materials Park, OHGoogle Scholar
  23. 23.
    Scientific Forming Technologies Corporation (2014) DEFORM: DocumentationGoogle Scholar
  24. 24.
    Wang RH, Knudsen JG (1958) Thermal conductivity of liquid-liquid emulsions. Ind Eng Chem 50(11):1667–1670. doi: 10.1021/ie50587a042 CrossRefGoogle Scholar
  25. 25.
    Weast RC (1981–1982) CRC handbook of chemistry and physics, 62nd Edition. CRC Press, Inc.Google Scholar
  26. 26.
    Deutsche Edelstahlwerke (ed) (2011) Unlegierter Vergütungsstahl - 1.1213 - Cf53Google Scholar
  27. 27.
    Spittel M, Spittel T (2009) Steel symbol/number: C50D/1.0586. In: Martienssen WWH (ed) Metal forming data of ferrous alloys—deformation behaviour, 2C1. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp. 240–245CrossRefGoogle Scholar
  28. 28.
    Sommerfeld A (1928) Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik. Z Physik 47(1–2):1–32. doi: 10.1007/BF01391052 CrossRefzbMATHGoogle Scholar
  29. 29.
    Reinhard G, Irmscher C (1980) Ellipsometrische Untersuchung zur Einwirkung von Luft unterschiedlicher Feuchtigkeit auf unlegierten Stahl, Werkstoffe und KorrosionGoogle Scholar
  30. 30.
    Kalpakjian S, Schmid SR, Werner EA (2011) Werkstofftechnik, [1. dt.-spr. Ausg.]; 5., aktualisierte Aufl. [der amerikanischen Ausg.]. ing - Maschinenbau. Pearson Studium, MünchenGoogle Scholar
  31. 31.
    Baehr HD, Stephan K (2013) Wärme- und Stoffübertragung. Springer, Berlin Heidelberg, Berlin, HeidelbergCrossRefGoogle Scholar
  32. 32.
    Zhorov GA, Yagunov KA (1978) Effect of thickness of oxide film on the emissivity and reflectivity of heat-resistant metals and alloys. J Eng Phys 34(1):20–23. doi: 10.1007/BF00863683 CrossRefGoogle Scholar
  33. 33.
    Kneer R (2009) Wärme- und Stoffübertragung. Manuscript, AachenGoogle Scholar
  34. 34.
    Kirchhoff G (1860) Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Ann Phys (Berlin) 185:275–301CrossRefGoogle Scholar
  35. 35.
    KLEIBER Infrared GmbH (ed) (2015) EmissionsgradtabelleGoogle Scholar
  36. 36.
    Deutsches Kupferinsitut (ed) (2005) CuCr1Zr: Werkstoff-DatenblätterGoogle Scholar
  37. 37.
    Spittel M, Spittel T (2009) Steel symbol/number: X5CrNi18-10/1.4301: Datasheet from Landolt-Boernstein—group VIII advanced materials and technologies volume 2C1: “Metal Forming Data of Ferrous Alloys - deformation behaviour” in SpringerMaterialsGoogle Scholar
  38. 38.
    (1947) NACA Conference on high-temperature materials: a compilation of papers presented by NACA staff members. Flight Propulsion Research Laboratory, Cleveland, OhioGoogle Scholar
  39. 39.
    Spittel M, Spittel T (2009) Steel symbol/number: X100CrMoV5-1/1.2363: Datasheet from Landolt-Boernstein—group VIII advanced materials and technologies volume 2C1: “Metal Forming Data of Ferrous Alloys - deformation behaviour” in SpringerMaterialsGoogle Scholar
  40. 40.
    Böhler Edelstahl GmbH & Co KG (ed) Warmarbeitsstahl—Hot work tool steel: data sheet 2013Google Scholar
  41. 41.
    Stauberstahl, 1.2363: Werkstoff-Datenblätter: 16Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Michael Terhorst
    • 1
  • Oksana Ozhoga-Maslovskaja
    • 2
    Email author
  • Daniel Trauth
    • 2
  • Anton Shirobokov
    • 2
  • Patrick Mattfeld
    • 2
  • Mareike Solf
    • 2
  • Fritz Klocke
    • 2
  1. 1.Carcoustics Shared Services GmbHMember of Carcoustics InternationalLeverkusenGermany
  2. 2.Laboratory for Machine Tools and Production Engineering (WZL)RWTH Aachen UniversityAachenGermany

Personalised recommendations