Activated TIG welding of AISI 304L using mono- and tri-component fluxes

ORIGINAL ARTICLE

Abstract

A-TIG welding employs a thin flux layer coated on the surface area to be welded. The flux can be like oxides, chlorides, and/or fluorides. A-TIG welding improves the productivity by enhancing the depth of penetration (DoP) significantly by arc constriction and/or by reversal of Marangoni force. Autogenous Activated-TIG welding employing two monocomponent fluxes viz., SiO2 and TiO2, and tricomponent fluxes comprising SiO2, TiO2, and Cr2O3 was performed to study their effect on the bead profile of the welds of AISI 304 L. The results were analyzed using Minitab 16 software, and a regression equation giving the effect of composition of the tricomponent fluxes on the DoP was developed. Through optimization, a flux composition to yield the maximum DoP was identified. Results of this study showed that the arc constriction was the dominant mechanism causing the improvement in the penetration. With the optimized flux 82 % raise in DoP was achieved.

Keywords

A-TIG welding 304 L Stainless steel Depth of penetration Monocomponent flux Tricomponent flux 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huang HY (2000) Effects of shielding gas composition and activating flux on GTAW weldments. Mater Des 30(7):2404–2409. doi: 10.1016/j.matdes.2008.10.024 CrossRefGoogle Scholar
  2. 2.
    Tseng KH, Hsu CY (2011) Performance of activated TIG process in austenitic stainless steel welds. J Mater Process Technol 211(3):503–512. doi: 10.1016/j.jmatprotec.2010.11.003 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lin HL, Wu TM (2012) Effects of activating flux on weld bead geometry of Inconel 718 alloy TIG welds. Mater Manuf Process 27(12):1457–1461. doi: 10.1080/10426914.2012.677914 CrossRefGoogle Scholar
  4. 4.
    Sakthivel T et al (2011) Comparison of creep rupture behaviour of type 316L (N) austenitic stainless steel joints welded by TIG and activated TIG welding processes. Mater Sci Eng A 528(22):6971–6980. doi: 10.1016/j.msea.2011.05.052 CrossRefGoogle Scholar
  5. 5.
    Morisada Y et al (2014) Development of simplified active flux tungsten inert gas welding for deep penetration. Mater Des 54:526–530. doi: 10.1016/j.matdes.2013.08.081 CrossRefGoogle Scholar
  6. 6.
    Kumar V et al (2009) Investigation of the A-TIG Mechanism and the Productivity Benefits in TIG Welding. In JOM-15 Fifteenth International Conference on the Joining of Materials. pp 1-11Google Scholar
  7. 7.
    Yang CL et al (2003) Research on the mechanism of penetration increase by flux in A-TIG welding. J Mater Sci Technol 19(1): 225-227. http://www.jmst.org/EN/Y2003/V19/ISupl./225
  8. 8.
    Vasantharaja P, Vasudevan M (2012) Studies on A-TIG welding of low activation ferritic/martensitic (LAFM) steel. J Nucl Mater 421(1):117-123. doi: 10.1016/j.jnucmat.2011.11.062
  9. 9.
    Venkatesan G et al (2014) Effect of Ternary Fluxes on Depth of Penetration in A-TIG Welding of AISI 409 Ferritic Stainless Steel. Procedia Mat Sci 5:2402-2410. doi: 10.1016/j.mspro.2014.07.485
  10. 10.
    Kumar SA, Sathiya P (2015) Experimental investigation of the A-TIG welding process of Incoloy 800H. Mater Manuf Process 30(9):1154–1159. doi: 10.1080/10426914.2015.1019092 CrossRefGoogle Scholar
  11. 11.
    Chern TS et al (2011) Study of the characteristics of duplex stainless steel activated tungsten inert gas welds. Mater Des 32:255–263. doi: 10.1016/j.matdes.2010.05.056 CrossRefGoogle Scholar
  12. 12.
    Howse DS, Lucas W (2000) Investigation into arc constriction by active fluxes for tungsten inert gas welding. Sci Technol Weld Joint 5(3):189-193. http://www.twi-global.com/technical-knowledge/published-papers/
  13. 13.
    Tathgir S et al (2014) Influence of current and shielding gas in TiO2 flux activated TIG welding on different graded steels. Mater Manuf Process 30(9):1115–1123. doi: 10.1080/10426914.2014.973591 CrossRefGoogle Scholar
  14. 14.
    Heiple CR, Roper JR (1982) Mechanism for minor element effect on GTA fusionzonegeometry. Weld J 61(4):97-102. https://app.aws.org/wj/supplement/WJ_1982_04_s97.pdf
  15. 15.
    Modenesi PJ et al (2015) Effect of flux density and the presence of additives in ATIG welding of austenitic stainless steel. Weld Int 29(6):425–432. doi: 10.1080/09507116.2014.932982 CrossRefGoogle Scholar
  16. 16.
    Tathgir S, Bhattacharya A (2015) Activated-TIG welding of different steels: influence of various flux and shielding gas. Mater Manuf Process 31(3):335–342. doi: 10.1080/10426914.2015.1037914 CrossRefGoogle Scholar
  17. 17.
    YushchenkoK A et al (2006) Peculiarities of A-TIG welding of stainless steel. In Trends In Welding Research. Proceedings of the 7th International Conference, ASM International. pp 367-376Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineereingNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations