Abstract
This paper proposes a new reduced kernel method for monitoring nonlinear dynamic systems on reproducing kernel Hilbert space (RKHS). Here, the proposed method is a concatenation of two techniques proposed in our previous studies, the reduced kernel principal component (RKPCA) Taouali et al. (Int J Adv Manuf Technol, 2015) and the singular value decomposition-kernel principal component (SVD-KPCA) (Elaissi et al. (ISA Trans, 52(1), 96–104, 2013)) The proposed method is entitled SVD-RKPCA. It consists at first to identify an implicit RKPCA model, that approaches “properly” the system behavior, and after that to update this RKPCA model by SVD of an incremented and decremented kernel matrix using a moving data window. The proposed SVD-RKPCA has been applied successfully for monitoring of a continuous stirred tank reactor (CSTR) as well as a Tennessee Eastman process (TEP).
This is a preview of subscription content, access via your institution.
References
Jaffel I, Taouali O, Elaissi E, Messaoud H (2014) A new online fault detection method based on PCA technique. IMA J Math Control Inf 31(4):487–499
Taouali O, Jaffel I, Lahdhiri H, Harkat MF, Messaoud H (2015) New fault detection method based on reduced kernel principal component analysis (RKPCA). Int J Adv Manuf Technol
Elaissi I, Jaffel I, Taouali O, Messaoud H (2013) Online prediction model based on the SVD-KPCA method. ISA Trans 52(1):96–104
Jaffel I, Taouali O, Harkat MF, Messaoud H (2015) Online process monitoring using a new PCMD index. Int J Adv Manuf Technol 80(5):947–957
Jaffel I, Taouali O, Harkat MF, Messaoud H (2015) A fault detection index using principal component analysis and mahalanobis distance. IFAC-PapersOnLine 48(21):1397–1401
Benaicha A, Guerfel M, Bouguila N, Benothman K (2010) New PCA-based methodology for sensor fault detection and localization, in In Int Conf Model Simulat MOSIM. 10
Harkat MF, Mourot G, Ragot J, (2002) Différentes méthodes de localisation de défauts basées sur les dernières composantes principales, Conf Int. Francoph. d’Automatique, CIFA
Mnassri B, El Mostafa El A, Ouladsine M (2015) Reconstruction-based contribution approaches for improved fault diagnosis using principal component analysis. J Process Control 33(2015):60–76
Alcala CF, Qin SJ (2009) Reconstruction-based contribution for process monitoring. Automatica 45(7):1593–1600
Dong D, McAvoy TJ (1996) Nonlinear principal component analysis-based on principal curves and neural networks. Comput Chem Eng 20(1):65–78
Harkat MF, Mourot G, Ragot J (2004) Nonlinear PCA combining principal curves and RBF-networks for process monitoring, 42nd IEEE Int Conf Decis Control (IEEE Cat. No.03CH37475). 2: 1956–1961
Scholkopf B (1998) Nonlinear component analysis as a kernel eigenvalues problem. Neural Comput 10:1299–1319
Kim KI, Jung K, Kim HJ (2005) Face recognition using kernel principal component analysis. IEEE Signal Process Lett 9(2):40–42
Widjaja D, Varon C, Dorado A, Suykens JAK (2012) Application of kernel principal component analysis for single-lead-ECG-derived respiration. IEEE Trans Biomed Eng 59(4):1169–1176
Xueqin L, Kruger U, Littlera T, Xie L, Wang S (2007) Moving window kernel PCA for adaptive monitoring of nonlinear processes. Chemom Intell Lab Syst 96(2):132–143
Fazai R, Taouali O, Harkat MF, Bouguila N (2016) A new fault detection method for nonlinear process monitoring. Int J Adv Manuf Technol
Ben Khediri I, Limam M, Weihs C (2011) Variable window adaptive kernel principal component analysis for nonlinear nonstationary process monitoring. Comput Ind Eng 61(3):437–446
Chouaib C, Mohamed-Faouzi H, Messaoud D (2015) New adaptive kernel principal component analysis for nonlinear dynamic process monitoring. Appl Math Inf Sci 9(4):1833–1845
Hoegaerts L, De Lathauwer L, Goethals I, Suykens JAK, Vandewalle J, De Moor B (2007) Efficiently updating and tracking the dominant kernel principal components. Neural Netw 20:220–229
Ding C (2004) K -means clustering via principal component analysis, in the 21st Int Conf Mach Learn, Banff, Canada
Dhillon IS (2004) Kernel k-means, spectral clustering and normalized cuts. Compute (78712) 551–556
Taouali O, Elaissi I, Messaoud H (2012) Online identification of nonlinear system using reduced kernel principal component analysis. Neural Comput & Applic 21(1):161–169
Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68(3):337–404
Nomikos P, Macgregor JF (1995) Multivariate SPC charts for batch monitoring processes. Technometrics 37(1):41–59
Golub GH, Van Loan CF (1996) Matrix computations. 10(8)
Chitta R, Jin R, Havens TC, Jain AK (2011) Approximate kernel k-means : solution to large scale kernel clustering, in 17th International Conference on Knowledge discovery and Data Mining, 895–903
Huang Y, Gertler J, McAvoy TJ (2000) Sensor and actuator fault isolation by structured partial PCA with nonlinear extensions. J Process Control 10(5):459–469
Gertler J, Li W, Huang Y, McAvoy T (1999) Isolation enhanced principal component analysis. AIChE J 45(2):323–334
Li R, Rong G (2006) Fault isolation by partial dynamic principal component analysis in dynamic process. Chin J Chem Eng 14(4):486–493
Lee JM, Yoo CK, Choi SW, Vanrolleghem PA, Lee IB (2004) Nonlinear process monitoring using kernel principal component analysis. Chem Eng Sci 59(1):223–234
Demuth H Neural network toolbox 5 user’ s guide
Laamiri I, Khouaja A, Messaoud H (2015) Convergence analysis of the alternating RGLS algorithm for the identification of the reduced complexity Volterra model. ISA Trans 55:27–40
Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46(1–3):131–159
Downs J, Vogel A (1993) A plante wide industrial process control problem. Comput Chem Eng 17:245–255
Robert CP, Casella G (1998) Monte Carlo statistical methods, 2013
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jaffel, I., Taouali, O., Harkat, M.F. et al. Kernel principal component analysis with reduced complexity for nonlinear dynamic process monitoring. Int J Adv Manuf Technol 88, 3265–3279 (2017). https://doi.org/10.1007/s00170-016-8987-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00170-016-8987-4
Keywords
- KPCA
- RKPCA
- SVD
- Fault detection
- Fault isolation
- Process monitoring