Skip to main content

Kernel principal component analysis with reduced complexity for nonlinear dynamic process monitoring

Abstract

This paper proposes a new reduced kernel method for monitoring nonlinear dynamic systems on reproducing kernel Hilbert space (RKHS). Here, the proposed method is a concatenation of two techniques proposed in our previous studies, the reduced kernel principal component (RKPCA) Taouali et al. (Int J Adv Manuf Technol, 2015) and the singular value decomposition-kernel principal component (SVD-KPCA) (Elaissi et al. (ISA Trans, 52(1), 96–104, 2013)) The proposed method is entitled SVD-RKPCA. It consists at first to identify an implicit RKPCA model, that approaches “properly” the system behavior, and after that to update this RKPCA model by SVD of an incremented and decremented kernel matrix using a moving data window. The proposed SVD-RKPCA has been applied successfully for monitoring of a continuous stirred tank reactor (CSTR) as well as a Tennessee Eastman process (TEP).

This is a preview of subscription content, access via your institution.

References

  1. Jaffel I, Taouali O, Elaissi E, Messaoud H (2014) A new online fault detection method based on PCA technique. IMA J Math Control Inf 31(4):487–499

  2. Taouali O, Jaffel I, Lahdhiri H, Harkat MF, Messaoud H (2015) New fault detection method based on reduced kernel principal component analysis (RKPCA). Int J Adv Manuf Technol

  3. Elaissi I, Jaffel I, Taouali O, Messaoud H (2013) Online prediction model based on the SVD-KPCA method. ISA Trans 52(1):96–104

    Article  MATH  Google Scholar 

  4. Jaffel I, Taouali O, Harkat MF, Messaoud H (2015) Online process monitoring using a new PCMD index. Int J Adv Manuf Technol 80(5):947–957

    Article  Google Scholar 

  5. Jaffel I, Taouali O, Harkat MF, Messaoud H (2015) A fault detection index using principal component analysis and mahalanobis distance. IFAC-PapersOnLine 48(21):1397–1401

    Article  Google Scholar 

  6. Benaicha A, Guerfel M, Bouguila N, Benothman K (2010) New PCA-based methodology for sensor fault detection and localization, in In Int Conf Model Simulat MOSIM. 10

  7. Harkat MF, Mourot G, Ragot J, (2002) Différentes méthodes de localisation de défauts basées sur les dernières composantes principales, Conf Int. Francoph. d’Automatique, CIFA

  8. Mnassri B, El Mostafa El A, Ouladsine M (2015) Reconstruction-based contribution approaches for improved fault diagnosis using principal component analysis. J Process Control 33(2015):60–76

    Article  Google Scholar 

  9. Alcala CF, Qin SJ (2009) Reconstruction-based contribution for process monitoring. Automatica 45(7):1593–1600

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong D, McAvoy TJ (1996) Nonlinear principal component analysis-based on principal curves and neural networks. Comput Chem Eng 20(1):65–78

    Article  Google Scholar 

  11. Harkat MF, Mourot G, Ragot J (2004) Nonlinear PCA combining principal curves and RBF-networks for process monitoring, 42nd IEEE Int Conf Decis Control (IEEE Cat. No.03CH37475). 2: 1956–1961

  12. Scholkopf B (1998) Nonlinear component analysis as a kernel eigenvalues problem. Neural Comput 10:1299–1319

    Article  Google Scholar 

  13. Kim KI, Jung K, Kim HJ (2005) Face recognition using kernel principal component analysis. IEEE Signal Process Lett 9(2):40–42

    Google Scholar 

  14. Widjaja D, Varon C, Dorado A, Suykens JAK (2012) Application of kernel principal component analysis for single-lead-ECG-derived respiration. IEEE Trans Biomed Eng 59(4):1169–1176

    Article  Google Scholar 

  15. Xueqin L, Kruger U, Littlera T, Xie L, Wang S (2007) Moving window kernel PCA for adaptive monitoring of nonlinear processes. Chemom Intell Lab Syst 96(2):132–143

    Google Scholar 

  16. Fazai R, Taouali O, Harkat MF, Bouguila N (2016) A new fault detection method for nonlinear process monitoring. Int J Adv Manuf Technol

  17. Ben Khediri I, Limam M, Weihs C (2011) Variable window adaptive kernel principal component analysis for nonlinear nonstationary process monitoring. Comput Ind Eng 61(3):437–446

    Article  Google Scholar 

  18. Chouaib C, Mohamed-Faouzi H, Messaoud D (2015) New adaptive kernel principal component analysis for nonlinear dynamic process monitoring. Appl Math Inf Sci 9(4):1833–1845

    Google Scholar 

  19. Hoegaerts L, De Lathauwer L, Goethals I, Suykens JAK, Vandewalle J, De Moor B (2007) Efficiently updating and tracking the dominant kernel principal components. Neural Netw 20:220–229

    Article  MATH  Google Scholar 

  20. Ding C (2004) K -means clustering via principal component analysis, in the 21st Int Conf Mach Learn, Banff, Canada

  21. Dhillon IS (2004) Kernel k-means, spectral clustering and normalized cuts. Compute (78712) 551–556

  22. Taouali O, Elaissi I, Messaoud H (2012) Online identification of nonlinear system using reduced kernel principal component analysis. Neural Comput & Applic 21(1):161–169

    Article  Google Scholar 

  23. Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68(3):337–404

    Article  MathSciNet  MATH  Google Scholar 

  24. Nomikos P, Macgregor JF (1995) Multivariate SPC charts for batch monitoring processes. Technometrics 37(1):41–59

    Article  MATH  Google Scholar 

  25. Golub GH, Van Loan CF (1996) Matrix computations. 10(8)

  26. Chitta R, Jin R, Havens TC, Jain AK (2011) Approximate kernel k-means : solution to large scale kernel clustering, in 17th International Conference on Knowledge discovery and Data Mining, 895–903

  27. Huang Y, Gertler J, McAvoy TJ (2000) Sensor and actuator fault isolation by structured partial PCA with nonlinear extensions. J Process Control 10(5):459–469

    Article  Google Scholar 

  28. Gertler J, Li W, Huang Y, McAvoy T (1999) Isolation enhanced principal component analysis. AIChE J 45(2):323–334

    Article  Google Scholar 

  29. Li R, Rong G (2006) Fault isolation by partial dynamic principal component analysis in dynamic process. Chin J Chem Eng 14(4):486–493

  30. Lee JM, Yoo CK, Choi SW, Vanrolleghem PA, Lee IB (2004) Nonlinear process monitoring using kernel principal component analysis. Chem Eng Sci 59(1):223–234

    Article  Google Scholar 

  31. Demuth H Neural network toolbox 5 user’ s guide

  32. Laamiri I, Khouaja A, Messaoud H (2015) Convergence analysis of the alternating RGLS algorithm for the identification of the reduced complexity Volterra model. ISA Trans 55:27–40

    Article  Google Scholar 

  33. Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46(1–3):131–159

    Article  MATH  Google Scholar 

  34. Downs J, Vogel A (1993) A plante wide industrial process control problem. Comput Chem Eng 17:245–255

    Article  Google Scholar 

  35. Robert CP, Casella G (1998) Monte Carlo statistical methods, 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Jaffel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jaffel, I., Taouali, O., Harkat, M.F. et al. Kernel principal component analysis with reduced complexity for nonlinear dynamic process monitoring. Int J Adv Manuf Technol 88, 3265–3279 (2017). https://doi.org/10.1007/s00170-016-8987-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8987-4

Keywords

  • KPCA
  • RKPCA
  • SVD
  • Fault detection
  • Fault isolation
  • Process monitoring