Advertisement

Selection of optimal machining parameters in pulsed CO2 laser cutting of Al6061/Al2O3 composite using Taguchi-based response surface methodology (T-RSM)

  • R. Adalarasan
  • M. Santhanakumar
  • S. Thileepan
ORIGINAL ARTICLE

Abstract

Modern day industries face a stiff challenge in cutting advanced materials like metal matrix composites with desired surface quality. The present work investigates the possibility of obtaining good quality characteristics (surface roughness and kerf width) with pulsed CO2 laser cutting of Al6061/Al2O3 composite. The parameters involved in this non-contact type cutting process like the beam power, assist gas pressure, flow rate of assist gas, pulsing frequency and speed of spot movement were varied according to a structured L27 orthogonal array, and the quality characteristics including surface finish and kerf width were observed. Response surface methodology (RSM) was applied to generate quadratic models for the observed quality characteristics, and desirability analysis was used to obtain the optimal setting of laser cutting parameters. Field emission scanning electron microscope (FESEM) images, EDX plot and P-profile graphs were also examined to study the cut surfaces.

Keywords

Laser cutting Al6061/Al2O3 composite Response surface methodology L27 orthogonal array Surface roughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gururaja S, Ramulu M, Pedersen W (2013) Machining of MMCs: a review. Mach Sci Technol 17(7):41–73CrossRefGoogle Scholar
  2. 2.
    Adalarasan R, Santhanakumar M, Rajmohan M (2015) Optimization of laser cutting parameters for Al6061/SiCp/Al2O3 composite using grey based response surface methodology (GRSM). Measurement 73(1):596–606CrossRefGoogle Scholar
  3. 3.
    Ren D, Narayan RJ, Lee Y (2009) Machined surface error analysis for laser micromachining of biocompatible polymers for medical devices manufacturing. Comput-Aided Design Appl 6(6):781–793CrossRefGoogle Scholar
  4. 4.
    Dubey AK, Yadava V (2008) Laser beam machining—a review. Int J MachTools Manuf 48(6):609–628CrossRefGoogle Scholar
  5. 5.
    Sharma A, Yadava V (2011) Optimization of cut quality characteristics during Nd:YAG laser straight cutting of Ni-based superalloy thin sheet using grey relational analysis with entropy measurement. Mater Manuf Process 26(12):1522–1529CrossRefGoogle Scholar
  6. 6.
    Shi A, Attia H, Vargas R, Tavakoli S (2008) Numerical and experimental investigation of laser-assisted machining of inconel 718. Mach Sci Technol 12(4):498–513CrossRefGoogle Scholar
  7. 7.
    Ding H, Shin YC (2013) Improving machinability of high chromium wear-resistant materials via laser-assisted machining. Mach Sci Technol 17(2):246–269CrossRefGoogle Scholar
  8. 8.
    Kurt M, Kaynak Y, Bagci E, Demirer H, Kurt M (2009) Dimensional analyses and surface quality of the laser cutting process for engineering plastics. Int J Adv Manuf Technol 41(3–4):259–267CrossRefGoogle Scholar
  9. 9.
    Scintilla LD, Palumbo G, Sorgente D, Tricarico L (2013) Fiber laser cutting of Ti6Al4V sheets for subsequent welding operations: effect of cutting parameters on butt joints mechanical properties and strain behaviour. Mater Des 47:300–308CrossRefGoogle Scholar
  10. 10.
    Biswas R, Kuar AS, Biswas SK, Mitra S (2010) Effects of process parameters on hole circularity and taper in pulsed Nd:YAG laser microdrilling of Tin-Al2O3 composites. Mater Manuf Process 25(6):503–514CrossRefGoogle Scholar
  11. 11.
    Islam MU, Campbell G (1993) Laser machining of ceramics: a review. Mater Manuf Process 8(6):611–630CrossRefGoogle Scholar
  12. 12.
    Kumpulainen T, Karjalainen I, Prusi T, Holsa J, Heikkila R, Tuokko R (2009) Pulsed laser machining implemented with piezoelectric actuator. Int J Optomechatronics 8(6):1–17CrossRefGoogle Scholar
  13. 13.
    Eltawahni HA, Rossini NS, Dassisti M, Alrashed K, Aldaham TA, Benyounis KY, Olabi AG (2013) Evaluation and optimization of laser cutting parameters for plywood materials. Opt Laser Eng 51(9):1029–1043CrossRefGoogle Scholar
  14. 14.
    Santhanakumar M, Adalarasan R, Rajmohan M (2015) Experimental modelling and analysis in abrasive waterjet cutting of ceramic tiles using grey-based response surface methodology. Arab J Sci Eng 40(11):3299–3311CrossRefGoogle Scholar
  15. 15.
    Adalarasan R, Santhanakumar M (2015) Application of Taguchi based response surface method (trsm) for optimization of multi responses in drilling Al/SiC/Al2O3 hybrid composite. J Inst Eng (India): Series C 96(1):65–71Google Scholar
  16. 16.
    Adalarasan R, Santhanakumar M, Rajmohan M (2015) Application of Grey Taguchi-based response surface methodology (GT-RSM) for optimizing the plasma arc cutting parameters of 304L stainless steel. Int J Adv Manuf Technol 78(5–8):1161–1170CrossRefGoogle Scholar
  17. 17.
    Lal S, Kumar S, Khan ZA, Siddiquee AN (2014) Wire electrical discharge machining of AA7075/SiC/Al2O3 hybrid composite fabricated by inert gas-assisted electromagnetic stir-casting process. J Braz Soc Mech Sci Eng 36(2):335–346CrossRefGoogle Scholar
  18. 18.
    Aghdeab SH, Mohammed LA, Ubaid AM (2015) Optimization of CNC turning for aluminum alloy using simulated annealing method. Jordan J Mech Indl Eng 9(1):39–44Google Scholar
  19. 19.
    Yang CB, Deng CS, Chiang HL (2012) Combining the Taguchi method with artificial neural network to construct a prediction model of a CO2 laser cutting experiment. Int J Adv Manuf Technol 59(9–12):1103–1111CrossRefGoogle Scholar
  20. 20.
    Karthikeyan R, Adalarasan R, Pai BC (2002) Optimization of machining characteristics for Al/SiCp composites using ANN/GA. J Mater Sci Technol 18(1):47–50CrossRefGoogle Scholar
  21. 21.
    Yilbas BS, Khan S, Raza K, Keles O, Ubeyli M, Demir T, Karakas MS (2010) Laser cutting of 7050 Al alloy reinforced with Al2O3 and B4C composites. Int J Adv Manuf Technol 50(1–4):185–193CrossRefGoogle Scholar
  22. 22.
    Yilbas BS, Akhtar SS, Karatas C (2013) Laser cutting of alumina tiles: heating and stress analysis. J Manuf Process 15(1):14–24CrossRefGoogle Scholar
  23. 23.
    Yilbas BS, Akhtar SS (2011) Laser cutting of alloy steel: three-dimensional modeling of temperature and stress fields. Mater Manuf Process 26(1):104–112CrossRefGoogle Scholar
  24. 24.
    Santhanakumar M, Adalarasan R, Rajmohan M (2016) Parameter design for cut surface characteristics in abrasive waterjet cutting of Al/SiC/Al2O3 composite using grey theory based RSM. J Mech Sci Technol 30(1):371–379CrossRefGoogle Scholar
  25. 25.
    Kalaimathi M, Venkatachalam G, Sivakumar M (2014) Experimental investigations on the electrochemical machining characteristics of monel 400 alloys and optimization of process parameters. Jordan J Mech Ind Eng 8(3):143–151Google Scholar
  26. 26.
    Sivarao S, Milkey KR, Samsudin ARN, Dubey AKN, Kidd PN (2014) Comparison between Taguchi method and response surface methodology (RSM) in modelling CO2 laser machining. Jordan J Mech nd Eng 8(1):35–42Google Scholar
  27. 27.
    Solaiyappan A, Mani K, Gopalan V (2014) Multi-objective for electrochemical machining of 6061Al/10%Wt Al2O3/5%Wt SiC composite using hybrid fuzzy-artificial bee colony algorithm. Jordan J Mech Ind Eng 8(5):323–331Google Scholar
  28. 28.
    Lum KCP, Ng SL, Black I (2000) CO2 laser cutting of MDF: 1. determination of process parameter settings. Optics Laser Technol 42(1):67–76CrossRefGoogle Scholar
  29. 29.
    Al-Sulaiman F, Yilbas BS, Ahsan M, Karatas C (2009) CO2 laser cutting of Kevlar laminate: influence of assisting gas pressure. Int J Adv Manuf Technol 45(1–2):62–70CrossRefGoogle Scholar
  30. 30.
    Yan Y, Ji L, Bao Y, Chen X, Jiang Y (2013) CO2 laser high-speed crack-free cutting of thick-section alumina based on close-piercing lapping technique. Int J Adv Manuf Technol 64(9–12):1611–1624CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSaveetha Engineering CollegeChennaiIndia

Personalised recommendations