Skip to main content
Log in

Hybrid estimation of surface roughness distribution in FDM parts using analytical modeling and empirical investigation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this study, surface roughness of the ABSplus part fabricated by fused deposition modeling (FDM) is improved by using the proposed methodology based on analytical modeling, where effective process parameters are optimized in the process planning stage. A new hybrid model is proposed for the analytical estimation of the surface roughness based on experimental investigation and the best performance results of the most cited analytical models. A specific test part capable of evaluating the surface roughness distribution for all surface build angles is designed and fabricated. The robustness of the recommended model is studied, and its performance is compared to other analytical models, where the results demonstrate a significant advancement in surface roughness estimation. The proposed model is validated comprehensively for other parts with various materials, process parameters, machines, and shapes to represent the general application of the hybrid model. Consequently, the summary of the evaluation confirms the capability of more fitted responses in the newly proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koike M, Greer P, Owen K, Lilly G, Murr LE, Gaytan SM, Martinez E, Okabe T (2011) Evaluation of titanium alloys fabricated using rapid prototyping technologies—electron beam melting and laser beam melting. Materials 4(10):1776

    Article  Google Scholar 

  2. Rahmati S (2014) Direct rapid tooling. In: Masood S (ed) Comprehensive materials processing, vol 10. Elsevier, Oxford, pp 303–344. doi:10.1016/B978-0-08-096532-1.01013-X

    Chapter  Google Scholar 

  3. Pandey PM, Reddy NV, Dhande SG (2003) Slicing procedures in layered manufacturing: a review. Rapid Prototyp J 9(5):274–288. doi:10.1108/13552540310502185

    Article  Google Scholar 

  4. Pyka G, Kerckhofs G, Papantoniou I, Speirs M, Schrooten J, Wevers M (2013) Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures. Materials 6(10):4737

    Article  Google Scholar 

  5. Reeves PE, Cobb RC (1995) Surface deviation modelling of LTM processes—a comparative analysis. In: Rapid Prototyping and Manufacturing. University of Nottingham, Nottingham, Uk

    Google Scholar 

  6. Ahn D, Kweon J-H, Kwon S, Song J, Lee S (2009) Representation of surface roughness in fused deposition modeling. J Mater Process Technol 209(15–16):5593–5600. doi:10.1016/j.jmatprotec.2009.05.016

    Article  Google Scholar 

  7. Onuh SO, Yusuf YY (1999) Rapid prototyping technology: applications and benefits for rapid product development. J Intell Manuf 10(3–4):301–311. doi:10.1023/A:1008956126775

    Article  Google Scholar 

  8. Nourghassemi A (2011) Surface roughness estimation for FDM systems. Ryerson University, Canada

    Google Scholar 

  9. Sood AK, Equbal A, Toppo V, Ohdar RK, Mahapatra SS (2012) An investigation on sliding wear of FDM built parts. CIRP J Manuf Sci Technol 5(1):48–54. doi:10.1016/j.cirpj.2011.08.003

    Article  Google Scholar 

  10. Li A, Zhang Z, Wang D, Jinyong Y (2010) Optimization method to fabrication orientation of parts in fused deposition modeling rapid prototyping. In: International Conference on Mechanic Automation and Control Engineering (MACE), 26–28 June 2010. pp 416–419. doi:10.1109/MACE.2010.5535335

  11. Byun HS, Lee KH (2006) Determination of optimal build direction in rapid prototyping with variable slicing. Int J Adv Manuf Technol 28(3–4):307–313. doi:10.1007/s00170-004-2355-5

    Article  Google Scholar 

  12. Chang D-Y, Huang B-H (2011) Studies on profile error and extruding aperture for the RP parts using the fused deposition modeling process. Int J Adv Manuf Technol 53(9–12):1027–1037. doi:10.1007/s00170-010-2882-1

    Article  Google Scholar 

  13. Thrimurthulu K, Pandey PM, Venkata Reddy N (2004) Optimum part deposition orientation in fused deposition modeling. Int J Mach Tools Manuf 44(6):585–594. doi:10.1016/j.ijmachtools.2003.12.004

    Article  Google Scholar 

  14. Armillotta A (2006) Assessment of surface quality on textured FDM prototypes. Rapid Prototyp J 12(1):35–41. doi:10.1108/13552540610637255

    Article  Google Scholar 

  15. Pandey PM, Reddy NV, Dhande SG (2003) Real time adaptive slicing for fused deposition modelling. Int J Mach Tools Manuf 43(1):61–71. doi:10.1016/S0890-6955(02)00164-5

    Article  Google Scholar 

  16. Pandey PM, Venkata Reddy N, Dhande SG (2003) Improvement of surface finish by staircase machining in fused deposition modeling. J Mater Process Technol 132(1–3):323–331. doi:10.1016/S0924-0136(02)00953-6

    Article  Google Scholar 

  17. Campbell RI, Martorelli M, Lee HS (2002) Surface roughness visualisation for rapid prototyping models. Comput Aided Des 34(10):717–725

    Article  Google Scholar 

  18. Ahn D, Kim H, Lee S (2009) Surface roughness prediction using measured data and interpolation in layered manufacturing. J Mater Process Technol 209(2):664–671. doi:10.1016/j.jmatprotec.2008.02.050

    Article  Google Scholar 

  19. Luis Perez CJ, Vivancos J, Sebastián MA (2001) Surface roughness analysis in layered forming processes. Precis Eng 25(1):1–12. doi:10.1016/S0141-6359(00)00049-0

    Article  Google Scholar 

  20. Bordoni M, Boschetto A (2012) Thickening of surfaces for direct additive manufacturing fabrication. Rapid Prototyp J 18(4):308–318. doi:10.1108/13552541211231734

    Article  Google Scholar 

  21. Ahn D, Kim H, Lee S (2007) Fabrication direction optimization to minimize post-machining in layered manufacturing. Int J Mach Tools Manuf 47(3–4):593–606. doi:10.1016/j.ijmachtools.2006.05.004

    Article  Google Scholar 

  22. Boschetto A, Giordano V, Veniali F (2013) Surface roughness prediction in fused deposition modelling by neural networks. Int J Adv Manuf Technol 67(9–12):2727–2742. doi:10.1007/s00170-012-4687-x

    Article  Google Scholar 

  23. Ahn D, Kwon SM, Lee HS (2008) Expression for surface roughness distribution of FDM processed parts. In: International Conference on Smart Manufacturing Application, ICSMA, 9–11 April 2008. pp 490–493. doi:10.1109/ICSMA.2008.4505572

  24. Mason A (2006) Multi-axis hybrid rapid prototyping using fusion deposition modeling. Ryerson University, Canada

    Google Scholar 

  25. Pandey PM, Thrimurthulu K, Reddy NV (2004) Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm. Int J Prod Res 42(19):4069–4089. doi:10.1080/00207540410001708470

    Article  MATH  Google Scholar 

  26. Reeves PE, Cobb RC (1997) Reducing the surface deviation of stereolithography using in‐process techniques. Rapid Prototyp J 3(1):20–31. doi:10.1108/13552549710169255

    Article  Google Scholar 

  27. Stratasys (2014) 3D printing with ABSplus. http://www.stratasys.com/materials/fdm/absplus. Accessed 21 November 2014

  28. MahrSurf XR 20 (2015) http://www.asgradco.com/Pics/productvDM/thumbnail/31_2.pdf. Accessed 18 Aug 2015

  29. Automotive Industry Action Group (AIAG) (2002) Measurement systems analysis. 3rd edn. Southfield, MI: Author

  30. Automotive Industry Action Group (AIAG) (2005) Statistical process control. 2nd edn. Southfield, MI: Author.

  31. Engel J, De Vries B (1997) Evaluating a well-known criterion for measurement precision. J Qual Technol 29(4):469

    Google Scholar 

  32. Smith R, McCrary SW, Callahan RN (2007) Gauge repeatability and reproducibility studies and measurement system analysis: a multimethod exploration of the state of practice. J Ind Technol 23(1):2–12

    Google Scholar 

  33. Rahmati S, Vahabli E (2015) Evaluation of analytical modeling for improvement of surface roughness of FDM test part using measurement results. Int J Adv Manuf Technol 79(5–8):823–829. doi:10.1007/s00170-015-6879-7

    Article  Google Scholar 

  34. Reeves PE (1998) Reducing the surface deviation of stereolithography using in-process techniques. University of Nottingham, UK

    Google Scholar 

  35. Pugalendhi S (2012) Experimental investigation of surface roughness for fused deposition modelled part with different angular orientation. Int J Adv Design Manufacturing Technology 5(3):8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Rahmati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahabli, E., Rahmati, S. Hybrid estimation of surface roughness distribution in FDM parts using analytical modeling and empirical investigation. Int J Adv Manuf Technol 88, 2287–2303 (2017). https://doi.org/10.1007/s00170-016-8949-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8949-x

Keywords

Navigation