Skip to main content

Smooth particle hydrodynamics study of surface defect machining for diamond turning of silicon

Abstract

This paper presents the feasibility study of potential application of recently developed surface defect machining (SDM) method in the fabrication of silicon and similar hard and brittle materials using smooth particle hydrodynamics (SPH) simulation approach. Simulation study of inverse parametric analysis was carried out to determine the Drucker-Prager (DP) constitutive model parameters of silicon by analysing the deformed material response behaviour using various DP model parameters. Indentation test simulations were carried out to perform inverse parametric study. SPH approach was exploited to machine silicon using conventional and surface defect machining method. To this end, we delve into opportunities of exploiting SDM through optimised machining quality, reduced machining time and lowering cost. The results of the conventional simulation were compared with the results of experimental diamond turning of silicon. In the SPH simulations, various types of surface defects were introduced on the workpiece prior to machining. Surface defects were equally distributed on the top face of the workpiece. The simulation study encompasses the investigation of chip formation, resultant machining forces, stresses and hydrostatic pressure with and without SDM. The study reveals the SDM process is an effective technique to manufacture hard and brittle materials as well as facilitate increased tool life. The study also divulges the importance of SPH evading the mesh distortion problem and offer natural chip formation during machining of hard and brittle materials.

References

  1. 1.

    King RF, Tabor D (1954) The strength properties and frictional behaviour of brittle solids. Proc Roy Soc Lond Ser Math Phys Sci 223(1153):225

    Article  Google Scholar 

  2. 2.

    Morris JC et al (1995) Origins of the ductile regime in single-point diamond turning of semiconductors. J Am Ceram Soc 78(8):2015–2020

    Article  Google Scholar 

  3. 3.

    Zarudi I et al (2004) The R8-BC8 phases and crystal growth in monocrystalline silicon under microindentation with a spherical indenter. J Mater Res 19(1):332–337

    Article  Google Scholar 

  4. 4.

    Patten J, Gao W, Yasuto K (2005) Ductile regime nanomachining of single-crystal silicon carbide. J Manuf Sci Eng 127(3):522

    Article  Google Scholar 

  5. 5.

    Blackley WS, Scattergood RO (1991) Ductile-regime machining model for diamond turning of brittle materials. Precis Eng-J Am Soc Precis Eng 13(2):95–103

    Google Scholar 

  6. 6.

    Durazo-Cardenas I et al (2007) 3D characterisation of tool wear whilst diamond turning silicon. Wear 262(3-4):340–349

    Article  Google Scholar 

  7. 7.

    Rusnaldy, Ko TJ, Kim HS (2007) An experimental study on microcutting of silicon using a micromilling machine. Int J Adv Manuf Technol 39(1-2):85–91

    Article  Google Scholar 

  8. 8.

    Tang X et al (2013) Ultraprecision micromachining of hard material with tool wear suppression by using diamond tool with special chamfer. CIRP Ann Manuf Technol 62(1):51–54

    Article  Google Scholar 

  9. 9.

    Tanaka H, Shimada S (2013) Damage-free machining of monocrystalline silicon carbide. CIRP Ann Manuf Technol 62(1):55–58

    Article  Google Scholar 

  10. 10.

    Suzuki H et al (2013) Development of micro milling tool made of single crystalline diamond for ceramic cutting. CIRP Ann Manuf Technol 62(1):59–62

    Article  Google Scholar 

  11. 11.

    Wang ZY, Rajurkar KP (2000) Cryogenic machining of hard-to-cut materials. Wear 239(2):168–175

    Article  Google Scholar 

  12. 12.

    Ghosh R (2006) Technology assessment on current advanced research projects in cryogenic machining. 1–87

  13. 13.

    Umbrello D, Micari F, Jawahir IS (2012) The effects of cryogenic cooling on surface integrity in hard machining: a comparison with dry machining. CIRP Ann Manuf Technol 61(1):103–106

    Article  Google Scholar 

  14. 14.

    Kumar MN et al (2014) Vibration assisted conventional and advanced machining: a review. Procedia Eng 97:1577–1586

    Article  Google Scholar 

  15. 15.

    Skelton RC (1967) Turning with an oscillating tool. Int J Mach Tool Des Res 8:239–259

    Article  Google Scholar 

  16. 16.

    Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32(3):153–172

    Article  Google Scholar 

  17. 17.

    Venkatesan K, Ramanujam R, Kuppan P (2014) Laser assisted machining of difficult to cut materials: research opportunities and future directions—a comprehensive review. Procedia Eng 97:1626–1636

    Article  Google Scholar 

  18. 18.

    Xavierarockiaraj S, Kuppan P (2014) Investigation of cutting forces, surface roughness and tool wear during laser assisted machining of SKD11Tool steel. Procedia Eng 97:1657–1666

    Article  Google Scholar 

  19. 19.

    Rahman Rashid RA et al (2012) An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti–6Cr–5Mo–5V–4Al beta titanium alloy. Int J Mach Tool Manuf 63:58–69

    Article  Google Scholar 

  20. 20.

    Mohammadi H et al (2015) Experimental work on micro laser-assisted diamond turning of silicon (111). J Manuf Process 19:125–128

    Article  Google Scholar 

  21. 21.

    Rashid WB et al (2013) The development of a surface defect machining method for hard turning processes. Wear 302(1-2):1124–1135

    Article  Google Scholar 

  22. 22.

    Rashid WB et al (2013) An experimental investigation for the improvement of attainable surface roughness during hard turning process. Proc Inst Mech Eng, Part B: J Eng Manuf 227(2):338–342

    Article  Google Scholar 

  23. 23.

    Jackson MJ, Robinson GM (2005) High strain rate induced initial chip formation of certain metals during micromachining processes. Mater Sci Technol 21(3):281–288

    Article  Google Scholar 

  24. 24.

    Priyadarshinin A, Samantaray AK (2012) Finite element modeling of chip formation in orthogonal machining. In: Davim JP (ed) Statistical and computational techniques in manufacturing. London.

  25. 25.

    Carroll JT, Strenkowski JS (1988) Finite-element models of orthogonal cutting with application to single point diamond turning. Int J Mech Sci 30(12):899–920

    Article  Google Scholar 

  26. 26.

    Movahhedy M, Gadala MS, Altintas Y (2000) Simulation of the orthogonal metal cutting process using an arbitrary Lagrangian-Eulerian finite-element method. J Mater Process Technol 103(2):267–275

    Article  Google Scholar 

  27. 27.

    Gong Y (2010) Meshless methods in LS DYNA: an overview of EFG and SPH. in LS DYNA seminar. Livermore Software Technology Corporation, Stuttgart

    Google Scholar 

  28. 28.

    Uhlmann E, Gerstenberger R, Kuhnert J (2013) Cutting simulation with the meshfree finite pointset method. Procedia CIRP 8:391–396

    Article  Google Scholar 

  29. 29.

    Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non shperical stars. Mon Not R Astron Soc: 375–389

  30. 30.

    Cleary PW, Prakash M, Ha J (2006) Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. J Mater Process Technol 177(1–3):41–48

    Article  Google Scholar 

  31. 31.

    Rüttimann N et al (2013) Simulation of hexa-octahedral diamond grain cutting tests using the SPH method. Procedia CIRP 8:322–327

    Article  Google Scholar 

  32. 32.

    Das R, Cleary PW (2010) Effect of rock shapes on brittle fracture using smoothed particle hydrodynamics. Theor Appl Fract Mech 53(1):47–60

    Article  Google Scholar 

  33. 33.

    Bui HH et al (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Methods Geomech 32(12):1537–1570

    Article  MATH  Google Scholar 

  34. 34.

    Lin J et al (2014) Efficient meshless SPH method for the numerical modeling of thick shell structures undergoing large deformations. Int J Non Linear Mech 65:1–13

    Article  Google Scholar 

  35. 35.

    Nordendale NA, PK Basu, Heard WF (2013) Modeling of high rate ballistic impact of brittle armors with abaqus explicit. In: Simulia Community Conference, Vienna, Austria

  36. 36.

    Villumsen MF, Fauerholdt TG (2008) Simulation of metal cutting using smooth particle hydrodynamics. in LS-DYNA: metallumformung III. Anwenderforum, Bamberg

  37. 37.

    Zhao H et al (2013) Influences of sequential cuts on micro-cutting process studied by smooth particle hydrodynamic (SPH). Appl Surf Sci 284:366–371

    Article  Google Scholar 

  38. 38.

    Gasiorek D (2013) The application of the smoothed particle hydrodynamics (SPH) method and the experimental verification of cutting of sheet metal bundles using a guillotine. J Theor Appl Mech 51(4):1053–1065

    Google Scholar 

  39. 39.

    Xi Y et al (2014) SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy. Comput Mater Sci 84:188–197

    Article  Google Scholar 

  40. 40.

    Limido J et al (2007) SPH method applied to high speed cutting modelling. Int J Mech Sci 49(7):898–908

    Article  Google Scholar 

  41. 41.

    Calamaz M et al (2009) Toward a better understanding of tool wear effect through a comparison between experiments and SPH numerical modelling of machining hard materials. Int J Refract Met Hard Mater 27(3):595–604

    Article  Google Scholar 

  42. 42.

    Okhrimenko GM (1989) Single crystal silicon piezoelectric ceramics and ferrite under uniaxial compression. Problemy Prochnosti 9:45–80

    Google Scholar 

  43. 43.

    Wan H et al (2011) A plastic damage model for finite element analysis of cracking of silicon under indentation. J Mater Res 25(11):2224–2237

    Article  Google Scholar 

  44. 44.

    Drucker DC, Prager WJ (1952) Soil mechanics and plastic analysis or limit design. Brown University, Division of Applied Mathematics

  45. 45.

    Simulia (2014) User documentation, Abaqus 6.14 Software manual

  46. 46.

    Seltzer R et al (2011) Determination of the Drucker–Prager parameters of polymers exhibiting pressure-sensitive plastic behaviour by depth-sensing indentation. Int J Mech Sci 53(6):471–478

    Article  Google Scholar 

  47. 47.

    Yoshino M et al (2001) Some experiments on the scratching of silicon: in situ scratching inside an SEM and scratching under high external hydrostatic pressures. Int J Mech Sci 43(2):335–347

    MathSciNet  Article  Google Scholar 

  48. 48.

    Jang J-I et al (2005) Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior. Acta Mater 53(6):1759–1770

    Article  Google Scholar 

  49. 49.

    Zarudi I, Zhang LC (1999) Structure changes in mono-crystalline silicon subjected to indentation experimental finding. Tribol Int 32:701–712

    Article  Google Scholar 

  50. 50.

    Juliano T, Domnich V, Gogotsi Y (2011) Examining pressure-induced phase transformations in silicon by spherical indentation and Raman spectroscopy: a statistical study. J Mater Res 19(10):3099–3108

    Article  Google Scholar 

  51. 51.

    Cao YP, Dao M, Lu J (2011) A precise correcting method for the study of the superhard material using nanoindentation tests. J Mater Res 22(05):1255–1264

    Article  Google Scholar 

  52. 52.

    Kailer A, Gogotsi YG, Nickel KG (1997) Phase transformations of silicon caused by contact loading. J Appl Phys 81(7):3057

    Article  Google Scholar 

  53. 53.

    Özel T (2006) The influence of friction models on finite element simulations of machining. Int J Mach Tool Manuf 46(5):518–530

    Article  Google Scholar 

  54. 54.

    Yan J, Zhao H, Kuriyagawa T (2009) Effects of tool edge radius on ductile machining of silicon: an investigation by FEM. Semicond Sci Technol 24(7):075018

    Article  Google Scholar 

  55. 55.

    Fang N, Jawahir IS (2002) Analytical predictions and experimental validation of cutting force ratio, chip thickness, and chip back-flow angle in restricted contact machining using the universal slip-line model. Int J Mach Tools Manuf 42(6):681–694

    Article  Google Scholar 

  56. 56.

    Pang L, Kishawy HA (2012) Modified primary shear zone analysis for identification of material mechanical behavior during machining process using genetic algorithm. J Manuf Sci Eng 134(4):041003

    Article  Google Scholar 

  57. 57.

    Lee S et al (2005) Large strain deformation field in machining. Metall Mater Trans 37(A):1633–1643

    Google Scholar 

  58. 58.

    Fang N (2005) Tool-chip friction in machining with a large negative rake angle tool. Wear 258(5-6):890–897

    Article  Google Scholar 

  59. 59.

    Cubberley WH, Bakerjian R (1989) Tool and manufacturing engineers handbook, ed. S.o.M.E. (SME). USA

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xichun Luo.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mir, A., Luo, X. & Siddiq, A. Smooth particle hydrodynamics study of surface defect machining for diamond turning of silicon. Int J Adv Manuf Technol 88, 2461–2476 (2017). https://doi.org/10.1007/s00170-016-8940-6

Download citation

Keywords

  • Surface defect machining
  • Diamond turning
  • Silicon
  • SPH