Effect of cutting parameters on surface roughness using orthogonal array in hard turning of AISI 1045 steel with YT5 tool

  • Zeqing Xiao
  • Xiaoping Liao
  • Zhenhong Long
  • Ming Li


The present work studies the effect of three variables (spindle speed, feed rate, and depth of cut) towards surface roughness by adopting orthogonal design and surrogate model. Experiment in hard turning of AISI 1045 steel with YT5 tool were carried out. The analysis of variance (ANOVA) and the regression model suggest that the feed rate has great effect on the surface roughness compared to the other two variables. The contour plot and the surface plot based on the regression model show the correlation between the response (surface roughness) and all possible pairwise combinations of the three variables. In order to get the desired surface roughness, the optimum cutting parameters are obtained by developing an optimization method.


Surface roughness Orthogonal array Regression model ANOVA Response surface Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yang WP, Tarng YS (1998) Design optimization of cutting parameters for turning operations based on the Taguchi method. J Mater Process Technol 84(1):122–129CrossRefGoogle Scholar
  2. 2.
    Nalbant M, Gökkaya H, Sur G (2007) Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Mater Des 28(4):1379–1385CrossRefGoogle Scholar
  3. 3.
    Bhattacharya A, Das S, Majumder P, Batish A (2009) Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA. Prod Eng 3(1):31–40CrossRefGoogle Scholar
  4. 4.
    Asiltürk I, Akkuş H (2011) Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method. Measurement 44(9):1697–1704Google Scholar
  5. 5.
    Asiltürk I, Neşeli S (2012) Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis. Measurement 45(4):785–794CrossRefGoogle Scholar
  6. 6.
    Kadirgama K, Rahman MM, Ismail AR, Bakar RA (2012) A surrogate modelling to predict surface roughness and surface texture when grinding AISI 1042 carbon steel. Sci Res Essays 7:598–608CrossRefGoogle Scholar
  7. 7.
    Aouici H, Yallese MA, Chaoui K, Mabrouki T, Rigal JF (2012) Analysis of surface roughness and cutting force components in hard turning with CBN tool: prediction model and cutting conditions optimization. Measurement 45(3):344–353CrossRefGoogle Scholar
  8. 8.
    Bouacha K, Yallese MA, Mabrouki T, Rigal JF (2010) Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. Int J Refract Met Hard Mater 28(3):349–361CrossRefGoogle Scholar
  9. 9.
    Wang X, Feng CX (2002) Development of empirical models for surface roughness prediction in finish turning. Int J Adv Manuf Technol 20(5):348–356CrossRefGoogle Scholar
  10. 10.
    Bartarya G, Choudhury SK (2012) Effect of cutting parameters on cutting force and surface roughness during finish hard turning AISI52100 grade steel. Procedia CIRP 1:651–656CrossRefGoogle Scholar
  11. 11.
    Barzani MM, Zalnezhad E, Sarhan AA, Farahany S, Ramesh S (2015) Fuzzy logic based model for predicting surface roughness of machined Al–Si–Cu–Fe die casting alloy using different additives-turning. Measurement 61:150–161CrossRefGoogle Scholar
  12. 12.
    Cica D, Sredanovic B, Kramar D (2015) Modelling of tool life and surface roughness in hard turning using soft computing techniques: a comparative study. Int J Mater Prod Technol 50(1):49–64CrossRefGoogle Scholar
  13. 13.
    Fisher RA (1925) Statistical methods for research workers. Oliver Boy d, Edinburgh Z 15:66–70Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Zeqing Xiao
    • 1
  • Xiaoping Liao
    • 2
  • Zhenhong Long
    • 2
  • Ming Li
    • 2
  1. 1.Institute of Light Industry and Food EngineeringGuangxi UniversityNanningChina
  2. 2.Institute of Mechanical EngineeringGuangxi UniversityNanningChina

Personalised recommendations