Advertisement

Improved semirigid bonnet tool for high-efficiency polishing on large aspheric optics

  • Chunjin Wang
  • Zhenzhong WangEmail author
  • Quanjin Wang
  • Xiaolong Ke
  • Bo Zhong
  • Yinbiao Guo
  • Qiao Xu
ORIGINAL ARTICLE

Abstract

High-efficiency polishing tool is urgently needed to meet the increasing demand of high accuracy optics, especially large aspheric optics. The purpose of this paper is to present an improved semirigid bonnet tool which can deliver high-efficiency polishing on aspheric optics together with the ability to diminish the grinding feature. Its structure is optimized from the former one to solve the defects. The tool influence function is also modeled here based on finite element analysis method. Testing experiments which prove that the improved semirigid bonnet could be used in the pre-polishing stage for plane or aspheric optics to dramatically shorten the process cycle, especially for large size optics, are also conducted. Besides, it also can be used at the early stage of the corrective polishing.

Keywords

Bonnet polishing Semirigid bonnet Aspheric optics Computer controlled polishing High-efficiency polishing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones RA (1977) Optimization of computer controlled polishing. Appl Opt 16:218–224CrossRefGoogle Scholar
  2. 2.
    Kordonski WI, Jacobs SD (1996) Magnetorheologial finishing. Int J Mod Phys B 10:2837–2848CrossRefGoogle Scholar
  3. 3.
    Martin HM, Anderson DS, Angel JRP, Nagel H, West SC, Young RS (1990) Progress in the stressed-lap polishing of a 1.8-m f/1 mirror. Proc SPIE 1236:682–690CrossRefGoogle Scholar
  4. 4.
    Allen LN, Romig HW (1990) Demonstration of an ion figuring progress. Proc SPIE 1333:22–33CrossRefGoogle Scholar
  5. 5.
    Fähnle OW, Brug H, Frankena HJ (1998) Fluid jet polishing of optical surfaces. Appl Opt 37:6771–6773CrossRefGoogle Scholar
  6. 6.
    Tsai FC, Yan BH, Kuan CY, Hsu RT, Hung JC (2009) An investigation into superficial embedment in mirror-like machining using abrasive jet polishing. Int J Adv Manuf Technol 43(5–6):500–512CrossRefGoogle Scholar
  7. 7.
    Beaucamp A, Namba Y, Freeman R (2012) Dynamic multiphase modeling and optimization of fluid jet polishing process. CIRP Ann 61:315–318CrossRefGoogle Scholar
  8. 8.
    Walker DD, Brooks D, King A, Freeman R, Morton R, McCavana G, Kim SW (2003) The ‘precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces. Opt Express 11:958–964CrossRefGoogle Scholar
  9. 9.
    Zeng S, Blunt L (2014) An experimental study on the correlation of polishing force and material removal for bonnet polishing of cobalt chrome alloy. Int J Adv Manuf Technol 73(1–4):185–193CrossRefGoogle Scholar
  10. 10.
    Kim DW, Burge JH (2010) Rigid conformal polishing tool using non-linear visco-elastic effect. Opt Express 18:2242–2257CrossRefGoogle Scholar
  11. 11.
    Yu GY, Walker DD, Li HY (2012) Research on fabrication of mirror segments for E-ELT. Proc SPIE 8416:841602CrossRefGoogle Scholar
  12. 12.
    Walker DD, Baldwin A, Evans R, Freeman R, Hamidi S, Shore P, Tonnellier X, Wei S, Williams C, Yu G (2007) A quantitative comparison of three grolishing techniques for the precession process. Proc SPIE 6671:66711HCrossRefGoogle Scholar
  13. 13.
    Yu GY, Walker DD, Li HY (2012) Implementing a grolishing process in Zeeko IRP machines. Appl Opt 51:6637–6641CrossRefGoogle Scholar
  14. 14.
    Preston F (1927) The theory and design of plate glass polishing machines. J Soc Glas Technol 9:214–256Google Scholar
  15. 15.
    Johnson KL (1985) Contact mechanics, chapter 4. Cambridge University Press, Cambridge, pp 84–106CrossRefGoogle Scholar
  16. 16.
    Zeng S, Blunt L (2014) Experimental investigation and analytical modeling of the effects of process parameters on material removal rate for bonnet polishing of cobalt chrome alloy. Precis Eng 38:348–355CrossRefGoogle Scholar
  17. 17.
    Wang CJ, Yang W, Wang ZZ, Yang X, Sun ZJ, Zhong B, Pan R, Yang P, Guo YB, Xu Q (2014) Highly efficient deterministic polishing using a semirigid bonnet. Opt Eng 53:095102CrossRefGoogle Scholar
  18. 18.
    Wagner RE, Shannon RR (1974) Fabrication of aspheric using a mathematical model for material removal. Appl Opt 13:1683–1689CrossRefGoogle Scholar
  19. 19.
    Wang CJ, Wang ZZ, Yang X, Sun ZJ, Peng YF, Guo YB, Xu Q (2014) Modeling of the static tool influence function of bonnet polishing based on FEA. Int J Adv Manuf Technol 74:341–349CrossRefGoogle Scholar
  20. 20.
    Li HY, Walker DD, Yu GY, Zhang W (2013) Modeling and validation of polishing tool influence functions for manufacturing segments for an extremely large telescopes. Appl Opt 52:5781–5787CrossRefGoogle Scholar
  21. 21.
    Li HY, Walker DD, Yu GY, Sayle A, Messelink W, Evans R, Beaucamp A (2013) Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges. Opt Express 21:370–381CrossRefGoogle Scholar
  22. 22.
    Kim DW, Kim SW (2005) Static tool influence function for fabrication simulation of hexagonal mirror segments for extremely large telescopes. Opt Express 13:910–917CrossRefGoogle Scholar
  23. 23.
    Ke XL, Wang CJ, Guo YB, Xu Q (2015) Modeling of tool influence function for high-efficiency polishing. Int J Adv Manuf Technol. doi: 10.1007/s00170-015-7913-5 Google Scholar
  24. 24.
    Walker DD, Beaucamp A, Bingham RG, Brooks D, Freeman R, Kim SW, King A, McCavana G, Morton R, Riley D, Simms J (2003) Precessions aspheric polishing: new results from the development programme. Proc SPIE 5180:15–29CrossRefGoogle Scholar
  25. 25.
    Wang CJ, Yang W, Wang ZZ, Yang X, Hu CL, Zhong B, Guo YB, Xu Q (2014) Dwell time algorithm for polishing large optics. Appl Opt 53:4752–4760CrossRefGoogle Scholar
  26. 26.
    Walker DD, Beaucamp A, Doubrovski V, Dunn C, Freeman R, McCavana G, Morton R, Riley D, Simms J, Wei X (2005) New results extending the precessions process to smoothing ground aspheres and producing freeform parts. Proc SPIE 5869:58690ECrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Chunjin Wang
    • 1
    • 2
  • Zhenzhong Wang
    • 1
    Email author
  • Quanjin Wang
    • 1
  • Xiaolong Ke
    • 1
    • 3
  • Bo Zhong
    • 2
  • Yinbiao Guo
    • 1
  • Qiao Xu
    • 2
  1. 1.Department of Mechanical and Electrical EngineeringXiamen UniversityXiamenChina
  2. 2.Research Center of Laser FusionChina Academy of Engineering PhysicsMianyangChina
  3. 3.School of Mechanical and Automotive EngineeringXiamen University of TechnologyXiamenChina

Personalised recommendations