Advertisement

Mechanical behavior and void coalescence analysis of cryorolled AA8090 alloy

  • K. S. V. B. R. Krishna
  • S. Vigneshwaran
  • K. Chandra Sekhar
  • Sarma S. R. Akella
  • K. Sivaprasad
  • R. Narayanasamy
  • K. Venkateswarlu
ORIGINAL ARTICLE
  • 127 Downloads

Abstract

Aluminum lithium alloy was rolled at two different temperatures, viz., 28 °C (301 K) and −196 °C (77 K). The thickness of the alloy was reduced by 75 % from its initial thickness (6 mm) in each condition. X-ray diffraction analysis was carried out on all samples to determine the grain size and dislocation density. The cryorolled sample exhibited a finer grain size with higher dislocation density, which was evidenced from micrographs obtained with transmission electron microscopy. Electron backscattered diffraction images revealed the presence of bimodal grain distribution in the rolled samples, in which the cryorolled sample exhibited a larger amount of ultrafine grains. Both tensile and hardness tests were performed on rolled samples. Cryorolled samples showed superior properties when comparing with room temperature rolled sample. Scanning electron microscopic images of fractured samples were used to analyze the void coalescence behavior. The various void coalescence parameters like void size, void area, length to width ratio of void, and ligament thickness were analyzed, and these results were correlated with microstructure, mechanical properties, crystallite size, and dislocation density in all conditions.

Keywords

Aluminum Lithium alloy Cryorolling Void coalescence X-ray peak broadening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang ZC, Prangnell PB (2014) Mater Des 57:351–359CrossRefGoogle Scholar
  2. 2.
    Rioja RJ (1998) Mater Sci Eng A 257:100–107CrossRefGoogle Scholar
  3. 3.
    Wang ZC, Prangnell PB (2002) Mater Sci Eng A 328:87–97CrossRefGoogle Scholar
  4. 4.
    Gokhale AA, Singh V (2005) J Mater Process Technol 159:369–376CrossRefGoogle Scholar
  5. 5.
    Pasang T, Symonds N, Moutsos S, Wanhill RJH, Lynch SP (2012) Eng Fail Anal 22:166–178CrossRefGoogle Scholar
  6. 6.
    Estrin Y, Vinogradov A (2013) Acta Mater 61:782–817CrossRefGoogle Scholar
  7. 7.
    Sabirov I, Murashkin MY, Valiev RZ (2013) Mater Sci Eng A 560:1–24CrossRefGoogle Scholar
  8. 8.
    Matsunoshita H, Edalati K, Furui M, Horita Z (2015) Mater Sci Eng A 640:443–448CrossRefGoogle Scholar
  9. 9.
    Panigrahi SK, Jayaganthan R (2010) Metall Mater Trans A 41:2675–2690CrossRefGoogle Scholar
  10. 10.
    Huang YC, Yan XY, Qiu T (2016) Trans Nonferr Metals Soc China 26:12–18CrossRefGoogle Scholar
  11. 11.
    Yu H, Tieu K, Lu C (2014) Procedia Eng 81:96–101CrossRefGoogle Scholar
  12. 12.
    Wang YM, Chen MW, Zhou FH, Ma E (2002) Nature 419:912–915CrossRefGoogle Scholar
  13. 13.
    Panigrahi SK, Jayaganthan R (2011) Mater Des 32:2172–2180CrossRefGoogle Scholar
  14. 14.
    Kumar V, Singh IV, Mishra BK, Jayaganthan R (2014) Procedia Mater Sci 6:1919–1926CrossRefGoogle Scholar
  15. 15.
    Jayaganthan R, Brokmeier HG, Schwebke B, Panigrahi SK (2010) J Alloy Compd 496:183–188CrossRefGoogle Scholar
  16. 16.
    Benzerga AA, Bessson J, Pianesau A (1999) J Eng Mater Technol 121:221–229CrossRefGoogle Scholar
  17. 17.
    Ravindran R, Manonmani K, Narayanasamy R (2009) Mater Sci Eng A 507:252–267CrossRefGoogle Scholar
  18. 18.
    Velmanirajan K, Anuradha K, Syed Abu Thaheer A, Narayanasamy R, Madhavan R, Suwas S (2014) Arch Civ Mech Eng 14:398–416CrossRefGoogle Scholar
  19. 19.
    Naga Krishna N, Akash AK, Sivaprasad K, Narayanasamy R (2010) Mater Des 31:3578–3584CrossRefGoogle Scholar
  20. 20.
    Chandra Sekhar K, Narayanasamy R, Venkateswarlu K (2014) Mater Des 57:351–359CrossRefGoogle Scholar
  21. 21.
    Krishna KSVBR, Chandra Sekhar K, Tejas R, Naga Krishna N, Sivaprasad K, Narayanasamy R, Venkateswarlu K (2015) Mater Des 67:107–117CrossRefGoogle Scholar
  22. 22.
    Williamson GK, Hall WH (1953) Acta Metall 1:22–31CrossRefGoogle Scholar
  23. 23.
    Naga Krishna N, Tejas R, Sivaprasad K, Venkateswarlu K (2013) Mater Des 52:785–790CrossRefGoogle Scholar
  24. 24.
    Pramanshu T, Anup Kumar P, Rita M, Jayaganthan R, Kantesh B (2015) Miner Met Mater Soc 67:726–732CrossRefGoogle Scholar
  25. 25.
    Ungar T (2004) Scr Mater 51:777–781CrossRefGoogle Scholar
  26. 26.
    Naga Krishna N, Ashfaq M, Susila P, Sivaprasad K, Venkateswarlu K (2015) Mater Charact 107:302–308CrossRefGoogle Scholar
  27. 27.
    Zhang X, Yang X, Chen W, Qin J, Jiaping F (2015) Mater Charact 106:100–107CrossRefGoogle Scholar
  28. 28.
    Chandra Sekhar K, Narayanasamy R, Velmanirajan K (2014) Mater Des 53:1064–1070CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • K. S. V. B. R. Krishna
    • 1
    • 2
  • S. Vigneshwaran
    • 3
  • K. Chandra Sekhar
    • 1
  • Sarma S. R. Akella
    • 2
  • K. Sivaprasad
    • 1
  • R. Narayanasamy
    • 3
  • K. Venkateswarlu
    • 4
  1. 1.Advanced Materials Processing Laboratory, Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTiruchirappalliIndia
  2. 2.Technical Center, Ashok LeylandChennaiIndia
  3. 3.Department of Production EngineeringNational Institute of TechnologyTiruchirappalliIndia
  4. 4.Materials Science DivisionCSIR-National Aerospace LaboratoriesBengaluruIndia

Personalised recommendations