Hybrid flow shop rescheduling algorithm for perishable products subject to a due date with random invalidity to the operational unit


In China, delivery delays due to a high probability of operational unit failure often occur in perishable manufacturing systems. This paper proposes a rescheduling algorithm known as complete rerouting (CR) for perishable manufacturing systems. The perishable characteristics of agri-products and the stochastic invalidity of operational units are researched. Products and operational units of the system are simulated by agents. In the developed virtual perishable manufacturing system, multiple product agents with different deadlines, values, and due dates search for the best processing route according to scheduling principles. When an operational unit fails stochastically, agents update their status and reroute their path using the rescheduling algorithm. The transition of agents can be described by the Petri net model proposed in this paper. Three basic experiments are investigated, validating the rescheduling algorithm proposed. This study demonstrates that the CR policy causes product agents to search for the best rerouting path compared to other rescheduling policies (i.e., right-shift scheduling and new-job rerouting). The optimal delivery times of products are determined based on penalty cost. Furthermore, this study analyzes the sensitivity of scheduling performance due to different product batches with two failed operational unit statuses (i.e., high frequency, short maintenance, and low frequency, long maintenance).

This is a preview of subscription content, access via your institution.


  1. 1.

    Chen ZS (2012) The processing warehouse design for agricultural supply chain. Logist Technol 18:64–67

    Google Scholar 

  2. 2.

    Shirvani N, Ruiz RB, Shadrokh S (2014) Cyclic scheduling of perishable products in parallel machine with release dates, due dates and deadlines. Int J Prod Econ 156:1–12

    Article  Google Scholar 

  3. 3.

    Palombarini J, Martinez E (2012) SmartGantt—an intelligent system for real time rescheduling based on relational reinforcement learning. Expert Syst Appl 39:10251–10268

    Article  Google Scholar 

  4. 4.

    De Raedt L (2008) Logical and relational learning. Springer, Berlin

    Google Scholar 

  5. 5.

    Driessens K, Ramon J, Blockeel H (2001) Speeding up relational reinforcement learning through the use of an incremental first order decision tree learner. In: De Raedt L, Flach P (eds) Twelfth European conference on machine learning ECML, vol 2167. LNCS Springer, Freiburg, pp 97–108

    Google Scholar 

  6. 6.

    Rao AS, Georgeff MP (1995) BDI agents: from theory to practice. In: Process of the 1st International Conference on Multi-agent Systems. AAAI Press, San Francisco

  7. 7.

    Husan SMK, Sarker R, Essam D (2011) Genetic algorithm for job-shop scheduling with machine unavailability and breakdown. Int J Prod Res 49(16):4999–5015

    Article  Google Scholar 

  8. 8.

    Nasr A-H, EIMekkawy TY (2011) Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm. Int J Prod Econ 132(2):279–291

    Article  Google Scholar 

  9. 9.

    Tripathy B, Dash S, Kumari PS (2015) Dynamic task scheduling using a directed neural network. J Parallel Distrib Comput 75:101–106

    Article  Google Scholar 

  10. 10.

    Fahmy SA, Balakrishman S, EIMekkawy TY (2008) A generic deadlock-free reactive scheduling approach. Int J Prod Res 46(1):1–20

    Article  Google Scholar 

  11. 11.

    Subramaniam V, Raheja AS, Reddy KRB (2005) Reactive repair tool for job shop schedules. Int J Prod Res 43:1–23

    Article  Google Scholar 

  12. 12.

    Sarker R, Omar M, Hasan KSM, Essan D (2013) Hybrid evolutionary algorithm for job scheduling under machine maintenance. Appl Soft Comput 13:1440–1447

    Article  Google Scholar 

  13. 13.

    Marichelvam MK, Prabaharan T, Yang XS (2014) Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Appl Comput 19:93–101

    Google Scholar 

  14. 14.

    Albers S, Schmdt G (2001) Scheduling with unexpected machine breakdown. Discret Appl Math 110:85–99

    MathSciNet  Article  Google Scholar 

  15. 15.

    Jia CF (2004) On minimizing completion time variance on a single machine subject to stochastic breakdown. Oper Res Trans 2:1–8

    Google Scholar 

  16. 16.

    Lu CC, Ying KC, Lin SW (2014) Robust single machine scheduling for minimizing total flow time in the presence of uncertain processing times. Comput Ind Eng 74:102–110

    Article  Google Scholar 

  17. 17.

    Ye Y, Li J, Li ZK, Tang QH (2014) Robust optimization and stochastic programming approaches for medium-term production scheduling of a large-scale steelmaking continuous casting process under demand uncertainty. Comput Chem Eng 66:165–185

    Article  Google Scholar 

  18. 18.

    Amorim P, Belo-Filho MAF, Toledo FMB, Almeder C, Almada-Lobo B (2013) Lot sizing versus batches in the production and distribution planning of perishable goods. Int J Prod Econ 146:208–218

    Article  Google Scholar 

  19. 19.

    Cai XO, Chen J, Xiao YB, Xu XL (2008) Product selection, machine time allocation, and scheduling decisions for manufacturing perishable products subject to a deadline. Comput Oper Res 35:1671–1681

    Article  MATH  Google Scholar 

  20. 20.

    Li J, Rodriguez D, Zhang D, Ma K (2015) Crop rotation model for contract farming with constraints on similar profits. Comput Electron Agric 119:12–18

    Article  Google Scholar 

  21. 21.

    Viergutz C, Knust S (2014) Integrated production and distribution scheduling with lifespan constraints. Ann Oper Res 213:293–318

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Akturk MS, Gorgulu E (1999) Match-up scheduling under a machine breakdown. Eur J Oper Res 112:81–97

    Article  MATH  Google Scholar 

  23. 23.

    Suwa H, Sandoh H (2007) Capability of cumulative delay based reactive scheduling for job shops with machine breakdowns. Comput Ind Eng 53:63–78

    Article  Google Scholar 

  24. 24.

    Zakaria Z, Petrovic S (2012) Genetic algorithm for match-up rescheduling of the flexible manufacturing system. Comput Ind Eng 62:670–686

    Article  Google Scholar 

  25. 25.

    Choi H, Kim JS, Lee DH (2013) Real-time scheduling for reentrant hybrid flow shops: a decision tree based mechanism and its application to a TFT-LCD line. Expert Syst Appl 38:3514–3521

    Article  Google Scholar 

  26. 26.

    Abumaizar RJ, Svestka JA (1997) Rescheduling job shops under random disruptions. Int J Prod Res 35:2065–2082

    Article  MATH  Google Scholar 

  27. 27.

    Merdan M, Moser T, Vrba P, Biffl S (2011) Investigating the robustness of re-scheduling policies with multi-agent system simulation. Int J Adv Manuf Technol 55:355–367

    Article  Google Scholar 

  28. 28.

    Gupta AK, Sivakumar AI (2005) Conjunctive simulated scheduling. Int J Adv Manuf Technol 26:1409–1413

    Article  Google Scholar 

  29. 29.

    Baykasoglu A, Gocken M, Unutmaz ZD (2008) New approaches to due date assignment in the job shops. Eur J Oper Res 187(1):31–45

    Article  MATH  Google Scholar 

  30. 30.

    Threr M, Huang G, Stevenson M, Silva C, Filho MG (2012) The performance of due date setting rules in assembly and multi-stage job shops: an assessment by simulation. Int J Prod Res 50:5949–5965

    Article  Google Scholar 

  31. 31.

    Li J, Ding C, Liu W (2014) Adaptive learning algorithm of self-organizing teams. Expert Syst Appl 41(6):2630–2637

    Article  Google Scholar 

  32. 32.

    Renna P (2012) Influence of maintenance policies on multi-stage manufacturing systems in dynamic conditions. Int J Prod Res 50:345–357

    Article  Google Scholar 

  33. 33.

    Yang Z, Chang Q, Djurdjanovic D, Ni J, Lee J (2007) Maintenance priority assignment utilizing on-line production information. J Manuf Sci Eng 129:435–446

    Article  Google Scholar 

  34. 34.

    Roux O, Duviver D, Quesnel G, Ramat E (2013) Optimization of preventive maintenance through a combined maintenance-production simulation model. Int J Prod Econ 143:3–12

    Article  Google Scholar 

  35. 35.

    Boccalatte A, Grosso A, Paolucci M, Tamoglia M (2004) A multi-agent system for dynamic just-in-time manufacturing production scheduling. In: 2004 I.E. International Conference on Systems, Man and Cybernetics, vol. 6, pp 5548–5553

  36. 36.

    Merdan M, Moser T, Sunindyo W, Biffl S, Vrba P (2013) Workflow scheduling using multi-agent systems in a dynamically changing environment. J Simul 7:144–158

    Article  Google Scholar 

  37. 37.

    Yin YQ, Wang Y, Cheng TCE, Wang DJ (2016) Two-agent single-machine scheduling to minimize the batch delivery cost. Comput Ind Eng 92:16–30

    Article  Google Scholar 

  38. 38.

    Arthaniari TS, Ramamurthy KG (1971) An extension of two machines sequencing problem. Oper Res 8:10–22

    MathSciNet  Google Scholar 

  39. 39.

    Xiong J, Xing LN, Chen YW (2013) Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns. Int J Prod Econ 141:112–126

    Article  Google Scholar 

  40. 40.

    Li SF, Zhu YL, Yin CW (2005) Flow shop scheduling with stochastic processing times and machine breakdowns. Comput Integr Manuf Syst 11:1425–1429

    Google Scholar 

  41. 41.

    Kutanoglu E, Sabuncuoglu I (2001) Routing-based reactive scheduling policies for machine failures in job shops. Int J Prod Res 39:3141–3158

    Article  MATH  Google Scholar 

  42. 42.

    Leon VJ, Wu SD, Storer RH (1994) Robustness measures and robust scheduling for job shops. IIE Trans 26(5):32–43

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jing Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Li, J. & Ma, W. Hybrid flow shop rescheduling algorithm for perishable products subject to a due date with random invalidity to the operational unit. Int J Adv Manuf Technol 93, 225–239 (2017). https://doi.org/10.1007/s00170-016-8859-y

Download citation


  • Rescheduling algorithm
  • Perishable manufacturing system
  • Multi-agent
  • Random invalidity
  • Multiple products