Skip to main content

Lithography-based additive manufacture of ceramic biodevices with design-controlled surface topographies

Abstract

The possibility of manufacturing textured materials and devices, with surface properties controlled from the design stage, instead of being the result of machining processes or chemical attacks, is a key factor for the incorporation of advanced functionalities to a wide set of micro- and nano-systems. High-precision additive manufacturing (AM) technologies based on photopolymerization, together with the use of fractal models linked to computer-aided design tools, allow for a precise definition of final surface properties. However, the polymeric master parts obtained with most commercial systems are usually inadequate for biomedical purposes and their limited strength and size prevents many potential applications. On the other hand, additive manufacturing technologies aimed at the production of final parts, normally based on layer-by-layer melting or sintering ceramic or metallic powders, do not always provide the required precision for obtaining controlled micro-structured surfaces with high-aspect-ratio details. Towards the desired degree of precision and performance, lithography-based ceramic manufacture is a remarkable option, as we discuss in the present study, which presents the development of two different micro-textured biodevices for cell culture. Results show a remarkable control of the surface topography of ceramic parts and the possibility of obtaining design-controlled micro-structured surfaces with high-aspect-ratio micro-metric details.

References

  1. 1.

    Archard J (1974) Surface topography and tribology. Tribol 7(5):213–220

    Google Scholar 

  2. 2.

    Bushan B, Israelachvili J, Landman U (1995) Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374:607–616

    Article  Google Scholar 

  3. 3.

    Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  Google Scholar 

  4. 4.

    Buxboim A, Discher DE (2010) Stem cells feel the difference. Nat Methods 7(9):695–697

    Article  Google Scholar 

  5. 5.

    Berginski M, Hüpkes J, Schulte M, Schöpe G, Stiebig H, Rech B (2007) The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. J Appl Phys 101:074903

    Article  Google Scholar 

  6. 6.

    Briones V, Aguilera JM, Brown C (2006) The effect of surface topography on color and gloss of chocolate samples. J Food Eng 77(4):776–783

    Article  Google Scholar 

  7. 7.

    Madou MJ. Fundamentals of microfabrication: The Science of miniaturization. CRC Press, 2nd Edition, New York, 2002

  8. 8.

    Chandra P, Lai K, Sunj HJ, Murthy NS, Kohn J (2010) UV laser-ablated surface textures as potential regulator of cellular response. Biointerphases 5(2):53–59

    Article  Google Scholar 

  9. 9.

    Martin CR, Aksay IA (2005) Microchannel molding: a soft lithography-inspired approach to micrometer-scale patterning. J Mater Res 20(8):1995–2003

    Article  Google Scholar 

  10. 10.

    Pulsifier DP, Lakhtakia A (2011) Background and survey of bioreplication techniques. Bioinspiration Biomimetics 6(3):031001

    Article  Google Scholar 

  11. 11.

    Kwasny W (2009) Predicting properties of PVD and CVD coatings based on fractal quantities describing their surface. J Achiev Mater Manuf Eng 37(2):125–192

    Google Scholar 

  12. 12.

    Jedlicka SS, McKenzie JL, Leavesley SL, Little KM, Webster TJ, Robinson JP, Nivens DE, Rickus JL (2007) Sol–gel derived materials as substrates for neuronal differentiation: effects of surface features and protein conformation. J Mater Chem 16(31):3221–3230

    Article  Google Scholar 

  13. 13.

    Rahmawan Y, Xu L, Yang S (2013) Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. J Mater Chem A 1(9):2955–2969

    Article  Google Scholar 

  14. 14.

    Gad-el-Hak M (2003) The MEMS Handbook. CRC Press, New York

    MATH  Google Scholar 

  15. 15.

    Naik VM, Mukherjee R, Majumder A, Sharma A. Super functional materials: creation and control of wettability, adhesion and optical effects by meso-texturing of surfaces. Current Trends in Science, Platinum Jubilee Special, 129–148, 2009

  16. 16.

    Mandelbrot B (1982) The fractal geometry of nature. W.H. Freeman, San Francisco

    MATH  Google Scholar 

  17. 17.

    Falconer K. Fractal geometry: mathematical foundations and applications. John Wiley & Sons Ltd., 2003

  18. 18.

    Bückmann T, Stenger N, Kadic M, Kaschke J, Frölich A, Kennerknecht T, Eberl C, Thiel M, Wegener M (2012) Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv Mater 24:2710–2714

    Article  Google Scholar 

  19. 19.

    Röhrig M, Thiel M, Worgull M, Hölscher H (2012) Hierarchical structures: 3D direct laser writing of nano-microstructured hierarchical gecko-mimicking surface. Small 8(19):3009–3015

    Article  Google Scholar 

  20. 20.

    Díaz Lantada A, Piotter V, Plewa K, Barié N, Guttmann M, Wissmann M (2015) Towards mass production of microtextured microdevices: linking rapid prototyping with microinjection molding. Int J Adv Manuf Technol 76:1011–1020

    Article  Google Scholar 

  21. 21.

    Baudis S, Heller C, Liska R, Stampfl J, Bergmeister H, Weigel G (2009) (Meth)acrylate-based photoelastomers as tailored biomaterials for artificial vascular grafts. J Polym Sci A Polym Chem 47(10):2664–2676

    Article  Google Scholar 

  22. 22.

    Baudis S, Steyrer B, Pulka T, Wilhelm H, Weigel G, Bergmeister H, Stampfl J, Liska R (2010) Photopolymerizable elastomers for vascular tissue regeneration. Macromol Symp 296(1):121–126

    Article  Google Scholar 

  23. 23.

    Stampfl J, Baudis S, Heller C, Liska R, Neumeister A, Kling R, Ostendorf A, Spitzbart M (2008) Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolitoraphy. J Micromech Microeng 18:125014

    Article  Google Scholar 

  24. 24.

    Gruber H, et al. Rapid-prototyping method and radiation-hardenable composition of application thereto. PCT/AT2006/000271, WO 2007002965 B1

  25. 25.

    Felzmann R, Gruber S, Mitteramskogler G, Tesavibul P, Boccaccini AR, Liska R, Stampfl J (2012) Lithography-based additive manufacturing of cellular ceramic structures. Adv Eng Mater 14(12):1052–1058

    Article  Google Scholar 

  26. 26.

    Patzer, JF. Generative Fertigung von keramischen Bauteilen für dentale Anwendungen. Dissertation. TU Wien, April 2011

  27. 27.

    Díaz Lantada A, Endrino JL, Mosquera AA, Lafont P (2010) Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications. J Phys Conf Ser 252(1):012003

    Article  Google Scholar 

  28. 28.

    Díaz Lantada A. Handbook on advanced design and manufacturing technologies for biomedical devices. Chapter 10. Springer, 2013

  29. 29.

    Schwentenwein M, Homa J (2015) Additive manufacture of dense alumina ceramics. Appl Ceram Technol 12(1):1–7

    Article  Google Scholar 

  30. 30.

    Eckel ZC, Zhou C, Martin JH, Jacobsen AJ, Carter WB, Schaedler TA (2016) Additive manufacturing of polymer-derived ceramics. Science 351(6268):58–62

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrés Díaz Lantada.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Blas Romero, A., Pfaffinger, M., Mitteramskogler, G. et al. Lithography-based additive manufacture of ceramic biodevices with design-controlled surface topographies. Int J Adv Manuf Technol 88, 1547–1555 (2017). https://doi.org/10.1007/s00170-016-8856-1

Download citation

Keywords

  • Fractals
  • Surface topography
  • Material texture
  • Materials design
  • Computer-aided design
  • Additive manufacturing
  • Lithography-based ceramic manufacture