Advertisement

Lithography-based additive manufacture of ceramic biodevices with design-controlled surface topographies

  • Adrián de Blas Romero
  • Markus Pfaffinger
  • Gerald Mitteramskogler
  • Martin Schwentenwein
  • Christopher Jellinek
  • Johannes Homa
  • Andrés Díaz LantadaEmail author
  • Jürgen Stampfl
Open Access
ORIGINAL ARTICLE
  • 1.4k Downloads

Abstract

The possibility of manufacturing textured materials and devices, with surface properties controlled from the design stage, instead of being the result of machining processes or chemical attacks, is a key factor for the incorporation of advanced functionalities to a wide set of micro- and nano-systems. High-precision additive manufacturing (AM) technologies based on photopolymerization, together with the use of fractal models linked to computer-aided design tools, allow for a precise definition of final surface properties. However, the polymeric master parts obtained with most commercial systems are usually inadequate for biomedical purposes and their limited strength and size prevents many potential applications. On the other hand, additive manufacturing technologies aimed at the production of final parts, normally based on layer-by-layer melting or sintering ceramic or metallic powders, do not always provide the required precision for obtaining controlled micro-structured surfaces with high-aspect-ratio details. Towards the desired degree of precision and performance, lithography-based ceramic manufacture is a remarkable option, as we discuss in the present study, which presents the development of two different micro-textured biodevices for cell culture. Results show a remarkable control of the surface topography of ceramic parts and the possibility of obtaining design-controlled micro-structured surfaces with high-aspect-ratio micro-metric details.

Keywords

Fractals Surface topography Material texture Materials design Computer-aided design Additive manufacturing Lithography-based ceramic manufacture 

References

  1. 1.
    Archard J (1974) Surface topography and tribology. Tribol 7(5):213–220Google Scholar
  2. 2.
    Bushan B, Israelachvili J, Landman U (1995) Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374:607–616CrossRefGoogle Scholar
  3. 3.
    Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8CrossRefGoogle Scholar
  4. 4.
    Buxboim A, Discher DE (2010) Stem cells feel the difference. Nat Methods 7(9):695–697CrossRefGoogle Scholar
  5. 5.
    Berginski M, Hüpkes J, Schulte M, Schöpe G, Stiebig H, Rech B (2007) The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. J Appl Phys 101:074903CrossRefGoogle Scholar
  6. 6.
    Briones V, Aguilera JM, Brown C (2006) The effect of surface topography on color and gloss of chocolate samples. J Food Eng 77(4):776–783CrossRefGoogle Scholar
  7. 7.
    Madou MJ. Fundamentals of microfabrication: The Science of miniaturization. CRC Press, 2nd Edition, New York, 2002Google Scholar
  8. 8.
    Chandra P, Lai K, Sunj HJ, Murthy NS, Kohn J (2010) UV laser-ablated surface textures as potential regulator of cellular response. Biointerphases 5(2):53–59CrossRefGoogle Scholar
  9. 9.
    Martin CR, Aksay IA (2005) Microchannel molding: a soft lithography-inspired approach to micrometer-scale patterning. J Mater Res 20(8):1995–2003CrossRefGoogle Scholar
  10. 10.
    Pulsifier DP, Lakhtakia A (2011) Background and survey of bioreplication techniques. Bioinspiration Biomimetics 6(3):031001CrossRefGoogle Scholar
  11. 11.
    Kwasny W (2009) Predicting properties of PVD and CVD coatings based on fractal quantities describing their surface. J Achiev Mater Manuf Eng 37(2):125–192Google Scholar
  12. 12.
    Jedlicka SS, McKenzie JL, Leavesley SL, Little KM, Webster TJ, Robinson JP, Nivens DE, Rickus JL (2007) Sol–gel derived materials as substrates for neuronal differentiation: effects of surface features and protein conformation. J Mater Chem 16(31):3221–3230CrossRefGoogle Scholar
  13. 13.
    Rahmawan Y, Xu L, Yang S (2013) Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. J Mater Chem A 1(9):2955–2969CrossRefGoogle Scholar
  14. 14.
    Gad-el-Hak M (2003) The MEMS Handbook. CRC Press, New YorkzbMATHGoogle Scholar
  15. 15.
    Naik VM, Mukherjee R, Majumder A, Sharma A. Super functional materials: creation and control of wettability, adhesion and optical effects by meso-texturing of surfaces. Current Trends in Science, Platinum Jubilee Special, 129–148, 2009Google Scholar
  16. 16.
    Mandelbrot B (1982) The fractal geometry of nature. W.H. Freeman, San FranciscozbMATHGoogle Scholar
  17. 17.
    Falconer K. Fractal geometry: mathematical foundations and applications. John Wiley & Sons Ltd., 2003Google Scholar
  18. 18.
    Bückmann T, Stenger N, Kadic M, Kaschke J, Frölich A, Kennerknecht T, Eberl C, Thiel M, Wegener M (2012) Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv Mater 24:2710–2714CrossRefGoogle Scholar
  19. 19.
    Röhrig M, Thiel M, Worgull M, Hölscher H (2012) Hierarchical structures: 3D direct laser writing of nano-microstructured hierarchical gecko-mimicking surface. Small 8(19):3009–3015CrossRefGoogle Scholar
  20. 20.
    Díaz Lantada A, Piotter V, Plewa K, Barié N, Guttmann M, Wissmann M (2015) Towards mass production of microtextured microdevices: linking rapid prototyping with microinjection molding. Int J Adv Manuf Technol 76:1011–1020CrossRefGoogle Scholar
  21. 21.
    Baudis S, Heller C, Liska R, Stampfl J, Bergmeister H, Weigel G (2009) (Meth)acrylate-based photoelastomers as tailored biomaterials for artificial vascular grafts. J Polym Sci A Polym Chem 47(10):2664–2676CrossRefGoogle Scholar
  22. 22.
    Baudis S, Steyrer B, Pulka T, Wilhelm H, Weigel G, Bergmeister H, Stampfl J, Liska R (2010) Photopolymerizable elastomers for vascular tissue regeneration. Macromol Symp 296(1):121–126CrossRefGoogle Scholar
  23. 23.
    Stampfl J, Baudis S, Heller C, Liska R, Neumeister A, Kling R, Ostendorf A, Spitzbart M (2008) Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolitoraphy. J Micromech Microeng 18:125014CrossRefGoogle Scholar
  24. 24.
    Gruber H, et al. Rapid-prototyping method and radiation-hardenable composition of application thereto. PCT/AT2006/000271, WO 2007002965 B1Google Scholar
  25. 25.
    Felzmann R, Gruber S, Mitteramskogler G, Tesavibul P, Boccaccini AR, Liska R, Stampfl J (2012) Lithography-based additive manufacturing of cellular ceramic structures. Adv Eng Mater 14(12):1052–1058CrossRefGoogle Scholar
  26. 26.
    Patzer, JF. Generative Fertigung von keramischen Bauteilen für dentale Anwendungen. Dissertation. TU Wien, April 2011Google Scholar
  27. 27.
    Díaz Lantada A, Endrino JL, Mosquera AA, Lafont P (2010) Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications. J Phys Conf Ser 252(1):012003CrossRefGoogle Scholar
  28. 28.
    Díaz Lantada A. Handbook on advanced design and manufacturing technologies for biomedical devices. Chapter 10. Springer, 2013Google Scholar
  29. 29.
    Schwentenwein M, Homa J (2015) Additive manufacture of dense alumina ceramics. Appl Ceram Technol 12(1):1–7CrossRefGoogle Scholar
  30. 30.
    Eckel ZC, Zhou C, Martin JH, Jacobsen AJ, Carter WB, Schaedler TA (2016) Additive manufacturing of polymer-derived ceramics. Science 351(6268):58–62CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Adrián de Blas Romero
    • 1
  • Markus Pfaffinger
    • 2
  • Gerald Mitteramskogler
    • 3
  • Martin Schwentenwein
    • 3
  • Christopher Jellinek
    • 3
  • Johannes Homa
    • 3
  • Andrés Díaz Lantada
    • 1
    Email author
  • Jürgen Stampfl
    • 2
    • 4
  1. 1.UPM Product Development Lab, Mechanical Engineering DepartmentUniversidad Politécnica de Madrid (TU Madrid, www.upm.es)MadridSpain
  2. 2.Christian Doppler Laboratory for Digital and Restorative DentistryViennaAustria
  3. 3.Lithoz GmbHViennaAustria
  4. 4.Institute of Materials Science and TechnologyTU WienWienAustria

Personalised recommendations