Advertisement

Tool orientation optimization for 5-axis machining with C-space method

  • Zhenpeng Mi
  • Chun-Ming Yuan
  • Xiaohui Ma
  • Li-Yong ShenEmail author
ORIGINAL ARTICLE

Abstract

Collision avoidance is a fundamental problem in five-axis tool path planning. A two-step frame is widely used in tool path generation, that is, to determine C-spaces and then to design collision free pathes in the C-spaces. We present a feasible C-space computation algorithm for triangular mesh models based on collision-cone computation and stereographic projection. Then we sample points in the free area at each CC point and generate a tool orientation using the graph-based method. We also introduce a difference graph to find a smoother tool orientation. Experimental results show that the accelerations and velocities of the rotation axes are much smoother than those given by Plakhotnik and Lauwers (Int J Adv Manuf Technol 74:307–318, 2014).

Keywords

Five-axis machining C-space Dijkstra’s algorithm Difference graph Tool orientation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Plakhotnik D, Lauwers B (2014) Graph-based optimization of five-axis machine tool movements by varying tool orientation. Int J Adv Manuf Technol 74:307–318CrossRefGoogle Scholar
  2. 2.
    Boyse JW (1979) Interference detection among solids and surfaces. Commun Acm 22(1):3–9CrossRefGoogle Scholar
  3. 3.
    Moore M, Wilhelms J (1988) Collision detection and response for computer animation. Comput Graph 22 (4):289–298CrossRefGoogle Scholar
  4. 4.
    Wang WP, Wang JY, Kim MS (2001) An algebraic condition for the separation of two ellipsoids. Comput Aided Geom Des 18:531–539MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen Y, Shen LY, Yuan CM (2011) Collision and intersection detection of two ruled surfaces using bracket method. Comput Aided Geom Des 28(2):114–126MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bobrow JE, Dubowsky S, Gibson JS (1985) Time-Optimal Control of robotic manipulators along specified paths. Int J Robot Res 4(3):3–17CrossRefGoogle Scholar
  7. 7.
    Timar SD, Farouki RT, Smith TS, Boyadjieff CL (2005) Algorithms for time-optimal control of CNC machines along curved tool paths. Robot Comput Integr Manuf 21:37–53CrossRefGoogle Scholar
  8. 8.
    Zhang K, Yuan CM, Gao XS (2013) Efficient algorithm for time-optimal feedrate planning and smoothing with confined chord error and acceleration. Int J Adv Manuf Technol 66(9):1685–1697CrossRefGoogle Scholar
  9. 9.
    Yang Z, Shen LY, Yuan CM, Gao XS (2015) Curve fitting and optimal interpolation for CNC machining under confined error using quadratic B-splines. Comput Aided Des 66:62–72MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lozano-Perez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput 100(2):108–120MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bajaj C, Kim MS (1987) Generation of configuration space obstacles: the case of moving algebraic curves. Algorithmica 4(2):157–172MathSciNetzbMATHGoogle Scholar
  12. 12.
    Choi BK, Kim DH, Jerard RB (1997) C-space approach to tool path generation for die and mould machining. Comput Aided Des 29(9):657–669CrossRefGoogle Scholar
  13. 13.
    Choi BK (2001) C-space approach to tool path generation for sculptured surface machining. Geom Modell: Theor Comput Basis Towards Adv CAD Appl 75:85–97CrossRefGoogle Scholar
  14. 14.
    Tang TD (2014) Algorithms for collision detection and avoidance for five-axis NC machining: a state of the art review. Comput Aided Des 51:1–17CrossRefGoogle Scholar
  15. 15.
    Morishige K, Takeuchi Y (1997) 5-axis control rough cutting of an impeller with efficiency and accuracy. IEEE Int Conf Robot Autom 2:1241–1246Google Scholar
  16. 16.
    Morishige K, Kase Y, Takeuchi Y (1997) Collision-free tool path generation using 2-dimensional C-space for 5-axis control machining. Int J Adv Manuf Technol 13:393–400CrossRefGoogle Scholar
  17. 17.
    Jun CS, Cha K, Lee YS (2003) Optimizing tool orientations for 5-axis machining by configuration-space search method. Comput Aided Des 35(6):549–566CrossRefGoogle Scholar
  18. 18.
    Lu J, Cheatham R, Jensen CG, Bowman B (2008) A three-dimensional configuration-space method for 5-axis tessellated surface machining. Int J Comput Integr Manuf 21(5):550–568CrossRefGoogle Scholar
  19. 19.
    Lin ZW, Shen HY, Gan WF (2012) Approximate tool posture collision-free area generation for five-axis CNC finishing process using admissible area interpolation. Int J Adv Manuf Technol 62(9C12):1191C1203Google Scholar
  20. 20.
    Liu W, Zhang JW, Cao ZY, Zhu SM, Yuan TJ (2016) Direct 5-axis tool posture local collision-free area generation for point clouds. Int J Comput Integr Manuf 9:1–13Google Scholar
  21. 21.
    Li LL, Zhang YF, Li HY, Geng L (2010) Generating tool path with smooth posture change for five-axis sculptured surface machining based on cutters accessibility map. Int J Adv Manuf Technol 53:699–709CrossRefGoogle Scholar
  22. 22.
    Lin ZW, Fu JZ, Shen HY, Gan WF (2014) Non-singular tool path planning by translating tool orientations in C-space. Int J Adv Manuf Technol 71(9-12):1835–1848CrossRefGoogle Scholar
  23. 23.
    Wang N, Tang K (2007) Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath. Comput Aided Des 39(10):841–852CrossRefGoogle Scholar
  24. 24.
    Hauth S, Richterich C, Glasmacher L, Linsen L (2011) Constant cusp toolpath generation in configuration space based on offset curves. Int J Adv Manuf Technol 53(1):325–338CrossRefGoogle Scholar
  25. 25.
    Hauth S, Linsen L (2011) Double-spiral tool path in configuration space. Int J Adv Manuf Technol 54 (9-12):1011–1022CrossRefGoogle Scholar
  26. 26.
    Hauth S, Linsen L (2012) Cycloids for polishing along double-spiral toolpaths in configuration space. Int J Adv Manuf Technol 60:343–356CrossRefGoogle Scholar
  27. 27.
    Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892CrossRefzbMATHGoogle Scholar
  28. 28.
    Guo J, Hermelin D, Komusiewicz C (2014) Local search for string problems: Brute-force is essentially optimal. Theor Comput Sci 525:30–41MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Peng Y, Yong JH, Dong WM, Zhang H, Sun JG (2005) A new algorithm for Boolean operations on general polygons. Comput Graph 29:57–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Zhenpeng Mi
    • 1
  • Chun-Ming Yuan
    • 1
  • Xiaohui Ma
    • 2
  • Li-Yong Shen
    • 1
    • 2
    • 3
    Email author
  1. 1.KLMM, Academy of Mathematics and Systems Science, Chinese Academy of SciencesBeijingChina
  2. 2.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of SciencesBeijingChina

Personalised recommendations