Stability improvement and vibration suppression of the thin-walled workpiece in milling process via magnetorheological fluid flexible fixture

  • Junjin MaEmail author
  • Dinghua Zhang
  • Baohai Wu
  • Ming Luo
  • Yilong Liu


In aerospace industry, thin-walled workpiece milling is a critical task. Also, the machining vibration is a major issue for the accuracy of the final part. In this study, a new dynamic analytical model is proposed to determine the effect of damping factor on the dynamic response of thin-walled workpiece in machining. A complex structure workpiece is equivalent to a thin plate. The fixture constrains and the damping factor are crucial elements of this thin plate. Therefore, the magnetorheological fluid flexible fixture is designed to suppress the machining vibration in machining process. Then, the general dynamic cutting force model and the damping force model are proposed for the key dynamic equation for the prediction of dynamic response to evaluate the stability of the milling process with and without the damping control. Finally, the feasibility and effectiveness of the proposed model is validated by machining tests. The predicted values match on the experiment results.


Chatter stability Machining vibration suppression Dynamic response Milling Thin-walled workpiece 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kersting P, Biermann D (2009) Simulation concept for predicting workpiece vibrations in five-axis milling. Mach Sci Technol 13(2):196–209CrossRefGoogle Scholar
  2. 2.
    Biermann D, Kersting P, Surmann T (2010) A general approach to simulating workpiece vibrations during five-axis milling of turbine blades. CIRP Ann Manuf Technol 59(1):125–128CrossRefGoogle Scholar
  3. 3.
    Zhang XJ, Xiong CH, Ding Y, Huang XD, Ding H (2014) A synthetical stability method for cutting parameter optimization to assure surface location accuracy in flexible part milling. Int J Adv Manuf Technol 75(5):1131–1147CrossRefGoogle Scholar
  4. 4.
    Zhou X, Zhang DH, Luo M, Wu BH (2014) Toolpath dependent chatter suppression in multi-axis milling of hollow fan blades with ball-end cutter. Int J Adv Manuf Technol 72(5):643–651CrossRefGoogle Scholar
  5. 5.
    Arnaud L, Gonzalo O, Seguy S, Jauregi H, Peigné G (2011) Simulation of low rigidity part machining applied to thin-walled structures. Int J Adv Manuf Technol 54(5):479–488CrossRefGoogle Scholar
  6. 6.
    Campa FJ, Lopez de Lacalle LN, Celaya A (2011) Chatter avoidance in the milling of thin floors with bull-nose end mills: model and stability diagrams. Int J Mach Tools Manuf 51(1):43–53CrossRefGoogle Scholar
  7. 7.
    Yang YQ, Xu DD, Liu Q (2015) Vibration suppression of thin-walled workpiece machining based on electromagnetic induction. Mater Manuf Process 30(7):829–835CrossRefGoogle Scholar
  8. 8.
    Wang BF, Nee AYC (2011) Robust fixture layout with the multi-objective non-dominated ACO/GA approach. CIRP Ann Manuf Technol 60(1):183–186CrossRefGoogle Scholar
  9. 9.
    Selvakumar S, Arulshri KP, Padmanaban KP, Sasikumar KSK (2013) Design and optimization of machining fixture layout using ANN and DOE. Int J Adv Manuf Technol 65(9–12):1573–1586CrossRefGoogle Scholar
  10. 10.
    Liu ZH, Wang MY, Wang K, Mei XS (2013) Multi-objective optimization design of a fixture layout considering locator displacement and force–deformation. Int J Adv Manuf Technol 67(5):1267–1279CrossRefGoogle Scholar
  11. 11.
    Prabhaharan G, Padmanaban KP, Krishnakumar R (2007) Machining fixture layout optimization using FEM and evolutionary techniques. Int J Adv Manuf Technol 32(11):1090–1103CrossRefGoogle Scholar
  12. 12.
    Asante JN (2008) A combined contact elasticity and finite element-based model for contact load and pressure distribution calculation in a frictional workpiece-fixture system. Int J Adv Manuf Technol 39(5):578–588CrossRefGoogle Scholar
  13. 13.
    Liu SG, Zheng L, Zhang ZH, Li ZZ, Liu DC (2007) Optimization of the number and positions of fixture locators in the peripheral milling of a low-rigidity workpiece. Int J Adv Manuf Technol 33(7):668–676CrossRefGoogle Scholar
  14. 14.
    Qin GH, Zhang WH, Wan M (2006) Analysis and optimal design of fixture clamping sequence. J Manuf Sci Eng 128(2):482–493CrossRefGoogle Scholar
  15. 15.
    Raghu A, Melkote SN (2005) Modeling of workpiece location error due to fixture geometric error and fixture-workpiece compliance. J Manuf Sci Eng 127(1):75–83CrossRefGoogle Scholar
  16. 16.
    Aoyama T, Kakinuma Y (2005) Development of fixture devices for thin and compliant workpieces. CIRP Ann Manuf Technol 54(1):325–328CrossRefGoogle Scholar
  17. 17.
    Kolluru KV, Axinte DA, Raffles MH, Becker AA (2014) Vibration suppression and coupled interaction study in milling of thin wall casings in presence of tuned mass dampers. P I Mech Eng B-J Eng 228(6):826–836Google Scholar
  18. 18.
    Yang YQ, Xu DD, Liu Q (2015) Milling vibration attenuation by eddy current damping. Int J Adv Manuf Technol 81(1):445–454CrossRefGoogle Scholar
  19. 19.
    Moradi H, Vossoughi G, Behzad M, Movahhedy MR (2015) Vibration absorber design to suppress regenerative chatter in nonlinear milling process: application for machining of cantilever plates. Appl Math Model 39(2):600–620CrossRefGoogle Scholar
  20. 20.
    Zhang YM, Sims ND (2005) Milling workpiece chatter avoidance using piezoelectric active damping: a feasibility study. Smart Mater Struct 14:N65–N70CrossRefGoogle Scholar
  21. 21.
    Zeng SS, Wan XJ, Li WL, Yin ZP, Xiong YL (2012) A novel approach to fixture design on suppressing machining vibration of flexible workpiece. Int J Mach Tools Manuf 58:29–43CrossRefGoogle Scholar
  22. 22.
    Wan XJ, Zhang Y (2013) A novel approach to fixture layout optimization on maximizing dynamic machinability. Int J Mach Tools Manuf 70:32–44CrossRefGoogle Scholar
  23. 23.
    Wan XJ, Zhang Y, Huang XD (2013) Investigation of influence of fixture layout on dynamic response of thin-wall multi-framed work-piece in machining. Int J Mach Tools Manuf 75:87–99CrossRefGoogle Scholar
  24. 24.
    Altintas Y, Lee P (1998) Mechanics and dynamics of ball end milling. J Manuf Sci Eng 120(4):684–692CrossRefGoogle Scholar
  25. 25.
    Budak E, Altintas Y, Armarego EJA (1996) Prediction of milling force coefficients from orthogonal cutting data. J Manuf Sci Eng 118(2):216–224CrossRefGoogle Scholar
  26. 26.
    Budak E (2006) Analytical models for high performance milling. Part I: cutting forces, structural deformations and tolerance integrity. Int J Mach Tools Manuf 46(12–13):1478–1488CrossRefGoogle Scholar
  27. 27.
    Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool vibrations and CNC design. Cambridge University Press, CambridgeGoogle Scholar
  28. 28.
    Montgomery D, Altintas Y (1991) Mechanism of cutting force and surface generation in dynamic milling. J Eng Ind 113(2):160–168CrossRefGoogle Scholar
  29. 29.
    Engin S, Altintas Y (2001) Mechanics and dynamics of general milling cutters.: part I: helical end mills. Int J Mach Tools Manuf 41(15):2195–2212CrossRefGoogle Scholar
  30. 30.
    Adetoro OB, Wen PH, Sim WM (2010) A new damping modelling approach and its application in thin wall machining. Int J Adv Manuf Technol 51(5):453–466CrossRefGoogle Scholar
  31. 31.
    Rao SS (2010) Mechanical vibrations. Prentice Hall, New YorkGoogle Scholar
  32. 32.
    Pour DS, Behbahani S (2016) Semi-active fuzzy control of machine tool chatter vibration using smart MR dampers. Int J Adv Manuf Technol 83(1):421–428CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Junjin Ma
    • 1
    Email author
  • Dinghua Zhang
    • 1
  • Baohai Wu
    • 1
  • Ming Luo
    • 1
  • Yilong Liu
    • 1
  1. 1.Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of EducationNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations