Macroscopic simulation and experimental measurement of melt pool characteristics in selective electron beam melting of Ti-6Al-4V

  • Daniel Riedlbauer
  • Thorsten Scharowsky
  • Robert F. Singer
  • Paul Steinmann
  • Carolin Körner
  • Julia Mergheim
Open Access
ORIGINAL ARTICLE

Abstract

Selective electron beam melting of Ti-6Al-4V is a promising additive manufacturing process to produce complex parts layer-by-layer additively. The quality and dimensional accuracy of the produced parts depend on various process parameters and their interactions. In the present contribution, the lifetime, width and depth of the pools of molten powder material are analyzed for different beam powers, scan speeds and line energies in experiments and simulations. In the experiments, thin-walled structures are built with an ARCAM AB A2 selective electron beam melting machine and for the simulations a thermal finite element simulation tool is used, which is developed by the authors to simulate the temperature distribution in the selective electron beam melting process. The experimental and numerical results are compared and a good agreement is observed. The lifetime of the melt pool increases linearly with the line energy, whereby the melt pool dimensions show a nonlinear relation with the line energy.

Keywords

Additive manufacturing Selective electron beam melting Ti-6Al-4V Heat transfer simulation Melt pool characteristics 

References

  1. 1.
    Aggarangsi P, Beuth JL, Gill DD (2004) Transient changes in melt pool size in laser additive manufacturing processes. In: Solid freeform fabrication proceedings, pp 163–1747Google Scholar
  2. 2.
    Ammer R, Rüde U, Markl M, Jüchter V, Körner C (2014) Validation experiments for LBM simulations of electron beam melting. Int J Modern Phys C 25(12):1441,009CrossRefGoogle Scholar
  3. 3.
    ASM: Titanium ti-6al-4v (grade 5) annealed (2014). http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP641. Technical datasheet for Ti-6Al-4V from ASM Aerospace Specifications Metals Inc.
  4. 4.
    Bangerth W, Hartmann R, Kanschat G (2007) deal.II - a general-purpose object-oriented finite element library. ACM Trans Math Softw (TOMS) 33(4):24MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baumers M, Tuck C, Hague R, Ashcroft I, Wildman R (2010) A comparative study of metallic additive manufacturing power consumption. In: Proceedings of the 2010 solid freeform fabrication symposiumGoogle Scholar
  6. 6.
    Bikas H, Stavropoulos P, Chryssolouris G (2015) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol:1–17Google Scholar
  7. 7.
    Boivineau M, Cagran C, Doytier D, Eyraud V, Nadal MH, Wilthan B, Pottlacher G (2006) Thermophysical properties of solid and liquid Ti-6Al-4V alloy. Int J Thermophys 27(2):507–529CrossRefGoogle Scholar
  8. 8.
    Carpenter: Titanium alloy Ti-6Al-4V (2014). http://cartech.ides.com. Technical datasheet for Ti-6Al-4V from Carpenter
  9. 9.
    Chen YX, Wang XJ, Chen SB (2014) The effect of electron beam energy density on temperature field for electron beam melting. Adv Mater Res 900:631–638CrossRefGoogle Scholar
  10. 10.
    Cormier D, Harrysson O, West H (2004) Characterization of H13 steel produced via electron beam melting. Rapid Prototyp J 10(1):35–41CrossRefGoogle Scholar
  11. 11.
    Denlinger ER, Heigel JC, Michaleris P (2014) Residual stress and distortion modeling of electron beam direct manufacturing Ti-6Al-4V. In: Proceedings of the institution of mechanical engineers, part b: journal of engineering manufacture p 0954405414539494Google Scholar
  12. 12.
    Ellsiepen P. (1999) Zeit- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poroser Medien̈. Inst. für Mechanik (Bauwesen), Ph.D. thesisGoogle Scholar
  13. 13.
    Frigola P, Harrysson O, Horn T, Ramirez D, Murr L (2014) Fabricating copper components with electron beam melting. Adv Mater Process 172(7):20–24Google Scholar
  14. 14.
    Gaytan S, Murr L, Martinez E, Martinez J, Machado B, Ramirez D, Medina F, Collins S, Wicker R (2010) Comparison of microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting. Metallurg Mater Trans A 41(12):3216–3227CrossRefGoogle Scholar
  15. 15.
    Harrysson O, Cormier D, Marcellin-Little D, Jajal K (2003) Direct fabrication of metal orthopedic implants using electron beam melting technology. In: Solid freeform fabrication symposium proceedings, pp 439–446Google Scholar
  16. 16.
    Heinl P, Müller L, Körner C, Singer RF, Müller FA (2008) Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomaterialia 4(5):1536–1544CrossRefGoogle Scholar
  17. 17.
    Heinl P, Rottmair A, Körner C, Singer RF (2007) Cellular titanium by selective electron beam melting. Adv Eng Mater 9(5):360–364CrossRefGoogle Scholar
  18. 18.
    Jamshidinia M, Kong F, Kovacevic R (2013) The coupled CFD-FEM model of electron beam melting. ASME District F - Early Career Tech Conf Proc 12:163–171Google Scholar
  19. 19.
    Juechter V, Scharowsky T, Singer R, Körner C (2014) Processing window and evaporation phenomena for Ti–6Al–4V produced by selective electron beam melting. Acta Materialia 76:252–258CrossRefGoogle Scholar
  20. 20.
    Karunakaran K, Bernard A, Suryakumar S, Dembinski L, Taillandier G (2012) Rapid manufacturing of metallic objects. Rapid Prototyp J 18(4):264–280CrossRefGoogle Scholar
  21. 21.
    Kaschnitz E, Reiter P, McClure J (2002) Thermophysical properties of solid and liquid 90Ti–6Al–4V in the temperature range from 1400 to 2300 K measured by millisecond and microsecond pulse-heating techniques. Int J Thermophys 23(1):267–275CrossRefGoogle Scholar
  22. 22.
    Klassen A, Bauereiß A, Körner C (2014) Modelling of electron beam absorption in complex geometries. J Phys D: Appl Phys 47(6):065,307CrossRefGoogle Scholar
  23. 23.
    Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987CrossRefGoogle Scholar
  24. 24.
    Markl M, Ammer R, Rüde U, Körner C (2014) Improving hatching strategies for powder bed based additive manufacturing with an electron beam by 3D simulations. CoRR arXiv:1403.3251
  25. 25.
    Murr L, Gaytan S, Medina F, Martinez E, Martinez J, Hernandez D, Machado B, Ramirez D, Wicker R (2010) Characterization of Ti–6Al–4V open cellular foams fabricated by additive manufacturing using electron beam melting. Mater Sci Eng A 527(7):1861–1868CrossRefGoogle Scholar
  26. 26.
    Murr L, Martinez E, Gaytan S, Ramirez D, Machado B, Shindo P, Martinez J, Medina F, Wooten J, Ciscel D et al (2011) Microstructural architecture, microstructures, and mechanical properties for a nickel-base superalloy fabricated by electron beam melting. Metallurg Mater Trans A 42(11):3491–3508CrossRefGoogle Scholar
  27. 27.
    Rai R, Burgardt P, Milewski J, Lienert T, DebRoy T (2009) Heat transfer and fluid flow during electron beam welding of 21Cr–6Ni–9Mn steel and Ti–6Al–4V alloy. J Phys D: Appl Phys 42(2):025,503CrossRefGoogle Scholar
  28. 28.
    Ramirez D, Murr L, Li S, Tian Y, Martinez E, Martinez J, Machado B, Gaytan S, Medina F, Wicker R (2011) Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater Sci Eng A 528(16):5379–5386CrossRefGoogle Scholar
  29. 29.
    Ramirez D, Murr L, Martinez E, Hernandez D, Martinez J, Machado B, Medina F, Frigola P, Wicker R (2011) Novel precipitate–microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Mater 59(10):4088–4099CrossRefGoogle Scholar
  30. 30.
    Riedlbauer D, Steinmann P, Mergheim J (2014) Thermomechanical finite element simulations of selective electron beam melting processes: performance considerations. Comput Mech 54(1):109–122MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Scharowsky T, Osmanlic F, Singer R, Körner C (2014) Melt pool dynamics during selective electron beam melting. Appl Phys A 114(4):1303–1307CrossRefGoogle Scholar
  32. 32.
    Shen N, Chou Y (2012) Numerical thermal analysis in electron beam additive manufacturing with preheating effects. In: Proceedings of the 23rd solid freeform fabrication symposium, pp 774–784Google Scholar
  33. 33.
    Zäh MF, Lutzmann S (2010) Modelling and simulation of electron beam melting. Product Eng 4(1):15–23CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Daniel Riedlbauer
    • 1
  • Thorsten Scharowsky
    • 2
  • Robert F. Singer
    • 2
  • Paul Steinmann
    • 1
  • Carolin Körner
    • 2
  • Julia Mergheim
    • 1
  1. 1.Chair of Applied MechanicsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Chair of Metals Science and TechnologyFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations