Skip to main content
Log in

Advanced vision approach applied to non-contact micro-measurements: a practical application

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In micro-world applications usually the need to manipulate, handle and measure micro-components becomes an important issue both for production and research reasons. Pointing out the aspect of measurements, the specific contest considerably conditions the technical approach and practical procedure which can be efficiently applied to obtain a reliable and precise measure. The framework of this research concerns the production phase of micro-biomedical components characterized by very small dimensions, high deformability, and sensitivity of surface damage. The main focus has dealt with the definition of an optical procedure to orient and assemble micro-elements. The compromise between the production cadence and the measurement necessity has been one of the main requirements for the research in order to define, implement, and evaluate an ad hoc process to get the expected outcomes. The proposed procedure allows to solve a practical issue by combining a solid vision background to a technical contest solving the specific measuring task and applying the same approach to different practical applications, both in micro and macro world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wybranski B (2004) Micro production technologies. mstNews 2:43–45

    Google Scholar 

  2. Alting L, Kimura F, Hnasen HN, Bissaccoo G (2003) Micro Engineering. CIRP Ann—Manuf Technol 52:635–657. doi:10.1016/S0007-8506(07)60208-X

    Article  Google Scholar 

  3. Moon J-H, Pahk H-J, Lee B-G (2011) Design, modeling, and testing of a novel 6-DOF micropositioning stage with low profile and low parasitic motion. Int J Adv Manuf Technol 55:163–197. doi:10.1007/s00170-010-3033-4

    Article  Google Scholar 

  4. Juhas L, Vujanić A, Adamović N, Nagy L, Borac B (2001) A platform for micropositioning based on piezo legs. Mechatronics 11:869–897. doi:10.1016/S0957-4158(00)00059-3

    Article  Google Scholar 

  5. Greitmann G, Buser RA (1996) Tactile microgripper for automated handling of microparts. Sens Actuators A Phys 53:410–415. doi:10.1016/0924-4247(96)80164-6

    Article  Google Scholar 

  6. Huang S-C, Lee C-M, Chiu C-C, Chen WL (2007) Topology optimal compliant microgripper. JSME Int J Ser A Solid Mech Mater Eng 49:589–596

    Article  Google Scholar 

  7. Shirinzadeh B (1998) Laser-interferometry-based tracking for dynamic measurements. Ind Robot 25:35–41. doi:10.1108/01439919810196946

    Article  Google Scholar 

  8. Teoh PL, Shirinzadeh B, Foong CW, Alici B (2002) The measurement uncertainties in the laser interferometry-based sensing and tracking technique. Measurement 32:135–150. doi:10.1016/S0263-2241(02)00006-4

    Article  Google Scholar 

  9. Alici G, Shirinzadeh B (2005) A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing. Mech Mach Theory 40:879–906. doi:10.1016/j.mechmachtheory.2004.12.012

    Article  MATH  Google Scholar 

  10. Wang SH, Tay CJ, Quan C, Shang HM, Zhou ZF (2000) Laser integrated measurement of surface roughness and micro-displacement. Meas Sci Technol 11:454–458. doi:10.1088/0957-0233/11/5/302

    Article  Google Scholar 

  11. He J, Do QDM, Downton AC, Kim JH (2005) A comparison of binarization methods for historical archive documents. In: Proceedings of the eighth international conference on document analysis and recognition. doi:10.1109/ICDAR.2005.3, vol 1, pp 538–542

  12. Watanabe M, Nayar S (1996) Telecentric optics for computational vision. In: Computer vision—ECCV ’96, vol 1065, pp 439–451. doi:10.1007/3-540-61123-1_159

  13. Chen Q, Sun Q-S, Heng PA, Xia D-S (2008) A double-threshold image binarization method based on edge detector. Pattern Recogn 41:1254–1267. doi:10.1016/j.patcog.2007.09.007

    Article  Google Scholar 

  14. Sauvola J, Pietikainen M (2000) Adaptive document image binarization. Pattern Recogn 33:225–236. doi:10.1016/j.patcog.2007.09.007

    Article  Google Scholar 

  15. Liu Y, Srihari SN (1997) Document image binarization based on texture features. IEEE Trans Pattern Anal Mach Intell 19:540–544. doi:10.1109/34.589217

    Article  Google Scholar 

  16. Trier ØD, Taxt T (1995) Evaluation of binarization methods for document images. IEEE Trans Pattern Anal Mach Intell 17:312–315. doi:10.1109/34.368197

    Article  Google Scholar 

  17. Wolf C, Jolion J, Chassaing F (2002) Text localization, enhancement and binarization in multimedia documents. In: Proceedings of the 16th international conference on pattern recognition, vol 2, pp 1037–1040. doi:10.1109/ICPR.2002.1048482

  18. Parker JR (2011) Algorithms for image processing and computer vision, 2nd edn. Wiley, New York

    Google Scholar 

  19. Fu KS, Gonzalez RC, Lee CSG (1987) Robotcs: control, sensing, vision and intelligence. McGraw-Hill Book Company, Consulting Editor. doi:10.1163/1568563047739544304

  20. Mo S, Mathews VJ (1998) Adaptive, quadratic preprocessing of document images for binarization. IEEE Trans Image Process 7:992–999. doi:10.1109/83.701155

    Article  Google Scholar 

  21. Chang CI, Chen K, Wang J, Althouse MLG (1994) A relative entropy-based approach to image thresholding. Pattern Recogn 27:1275–1289. doi:10.1016/0031-3203(94)90011-6

    Article  Google Scholar 

  22. Hu MK (1962) Visual pattern recognition by moment invariants. In: Symposium on microrobotics, IRE transactions on information theory, vol 2, pp 179–187. doi:10.1109/TIT.1962.1057692

  23. Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Trans Math Softw (TOMS) 22:469–483. doi:10.1145/235815.235821

    Article  MathSciNet  MATH  Google Scholar 

  24. Skalansky J (1982) Finding the convex hull of a simple polygon. Pattern Recogn Lett 1:79–83. doi:10.1016/0167-8655(82)90016-2

    Article  Google Scholar 

  25. Umbach D, Jones KN (2003) A few methods for fitting circles to data. IEEE Trans Instrum Meas 52:1881–1885. doi:10.1109/TIM.2003.820472

    Article  Google Scholar 

  26. Suzuki S (1985) Topological structural analysis and digitized binary images by border following. Comput Vis Graphics Image Process 30:32–46. doi:10.1016/0734-189X(85)90016-7

    Article  MATH  Google Scholar 

  27. Teh C-H, Chin RT (1989) On the detection of dominant points on digital curves. IEEE Trans Pattern Anal Mach Intell 11:859–872. doi:10.1109/34.31447

    Article  Google Scholar 

  28. Blum H (1967) Model for the perception of speech and visual form. MIT Press, Cambridge

    Google Scholar 

  29. Sonka M, Hlavac V, Boyle R (2002) Image processing, analysis, and machine vision, 2nd edn. PPWS Publishing

  30. Delprete C, Rosso C, Scarzella C (2014) New concept for micro-manipulation systems: a practical experience. Int J Adv Manuf Technol 74:1077–1085. doi:10.1007/s00170-014-6044-8

    Article  Google Scholar 

  31. Tsarouchi P, Michalos G, Makris S, Chryssolouris G (2013) Vision system for robotic handling of randomly placed objects. In: Procedia CIRP, (CIRPe2013) 2nd CIRP global web conference, vol 9, pp 61–66

  32. Chaumette F, Hutchinson S (2007) Visual servo control II: advanced approaches. IEEE Robot Autom Mag 14(1):109–118

    Article  Google Scholar 

  33. Cheng F, Chen X (2008) Integration of 3D stereo vision measurements in industrial robot applications. In: International conference on engineering and technology, November 17–19, Nashville. ISBN 978-1-60643-379-9

  34. Demuynck O, Pacheco C, Moore AL (2009) Industrial machine vision system for fast and precise 3D object localization. In: 9th WSEAS international conference on signal processing, computational geometry and artificial vision. World Scientific and Engineering Academy and Society (WSEAS), Moscow, p 160

  35. Michalos G, Makris S, Eytan A, Matthaiakis S, Chryssolouris G (2012) Robot path correction using stereo vision system. In: 45th CIRP conference on manufacturing systems. Athens. Procedia, pp 400–405

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Scarzella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delprete, C., Rosso, C., Savino, G. et al. Advanced vision approach applied to non-contact micro-measurements: a practical application. Int J Adv Manuf Technol 88, 471–481 (2017). https://doi.org/10.1007/s00170-016-8755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8755-5

Keywords

Navigation