Skip to main content
Log in

Hydrostatic radial forward tube extrusion as a new plastic deformation method for producing seamless tubes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Hydrostatic radial forward tube extrusion (HRFTE) as a new and innovative method is developed for producing large-diameter seamless tubes from smaller hollow billets. The HRFTE process is based on hydrostatic pressure, and radial forward tube extrusion provides the possibility of producing a large-diameter tube with low hydraulic oil pressures. In this procedure, a movable punch placed inside the hollow billet plays the main role in reducing the required hydrostatic pressure. The HRFTE process was applied to pure aluminum at room temperature, and the mechanical properties, material flow behavior, and microstructural evolution were examined. Since the large effective strains were applied to the material during the process, the strength and hardness were significantly improved. Yield and ultimate strength were increased, respectively, about 2.48 and 1.86 times compared to the initial values. Microhardness was also increased to 59 Hv from the initial value of 28 HV. Good homogeneity of effective strain and microhardness in the longitudinal section was observed, but there is an inhomogeneity along the tube thickness. The HRFTE process seems to be an extrusion process with a high capability of industrialization for producing a large-diameter seamless tube with superior mechanical properties using low hydrostatic pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buschhausen A, Weinmann K, Lee JY, Altan T (1992) Evaluation of lubrication and friction in cold forging using a double backward-extrusion process. J Mater Process Technol 33:95–108. doi:10.1016/0924-0136(92)90313-H

    Article  Google Scholar 

  2. Cho HY, Min GS, Jo CY, Kim MH (2003) Process design of the cold forging of a billet by forward and backward extrusion. J Mater Process Technol 135:375–381. doi:10.1016/S0924-0136(02)00870-1

    Article  Google Scholar 

  3. Shatermashhadi V, Manafi B, Abrinia K, Faraji G, Sanei M (2014) Development of a novel method for the backward extrusion. Mater Des 62:361–366. doi:10.1016/j.matdes.2014.05.022

    Article  Google Scholar 

  4. Lee Y, Hwang S, Chang Y, Hwang B (2001) The forming characteristics of radial–forward extrusion. J Mater Process Technol 113:136–140. doi:10.1016/S0924-0136(01)00705-1

    Article  Google Scholar 

  5. Robertson J (1894) Method of and apparatus for forming metal articles, British Patent No. 19 356 (October 14, 1893). US Patent (524):504

  6. Skiba J, Pachla W, Mazur A, Przybysz S, Kulczyk M, Przybysz M, Wróblewska M (2014) Press for hydrostatic extrusion with back-pressure and the properties of thus extruded materials. J Mater Process Technol 214:67–74. doi:10.1016/j.jmatprotec.2013.07.014

    Article  Google Scholar 

  7. Bridgman PW (1952) Studies in large plastic flow and fracture, vol 177. McGraw-Hill New York

  8. Faraji G, Jafarzadeh H, Jeong H, Mashhadi M, Kim H (2012) Numerical and experimental investigation of the deformation behavior during the accumulative back extrusion of an AZ91 magnesium alloy. Mater Des 35:251–258. doi:10.1016/j.matdes.2011.09.057

    Article  Google Scholar 

  9. Xie JX, Ikeda K, Murakami T (1995) UBA analysis of the process of pipe extrusion through a porthole die. J Mater Process Technol 49(3–4):371–385. doi:10.1016/0924-0136(94)01582-L

    Article  Google Scholar 

  10. Wang JT, Li Z, Wang J, Langdon TG (2012) Principles of severe plastic deformation using tube high-pressure shearing. Scr Mater 67(10):810–813. doi:10.1016/j.scriptamat.2012.07.028

    Article  Google Scholar 

  11. Arzaghi M, Fundenberger J, Toth L, Arruffat R, Faure L, Beausir B, Sauvage X (2012) Microstructure, texture and mechanical properties of aluminum processed by high-pressure tube twisting. Acta Mater 60(11):4393–4408. doi:10.1016/j.actamat.2012.04.035

    Article  Google Scholar 

  12. Mohebbi MS, Akbarzadeh A (2010) Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes. Mater Sci Eng A 528(1):180–188. doi:10.1016/j.msea.2010.08.081

    Article  Google Scholar 

  13. Faraji G, Mashhadi MM, Kim HS (2011) Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes. Mater Lett 65(19):3009–3012. doi:10.1016/j.matlet.2011.06.039

    Article  Google Scholar 

  14. Faraji G, Babaei A, Mashhadi MM, Abrinia K (2012) Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes. Mater Lett 77:82–85. doi:10.1016/j.matlet.2012.03.007

    Article  Google Scholar 

  15. Faraji G, Mashhadi M, Bushroa A, Babaei A (2013) TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process. Mater Sci Eng A 563:193–198. doi:10.1016/j.msea.2012.11.065

    Article  Google Scholar 

  16. Babaei A, Mashhadi MM, Jafarzadeh H (2014) Tube cyclic expansion-extrusion (TCEE) as a novel severe plastic deformation method for cylindrical tubes. J Mater Sci 49:3158–3165. doi:10.1007/s10853-014-8017-6

    Article  Google Scholar 

  17. Chan WL, Fu MW, Yang B (2011) Study of size effect in micro-extrusion process of pure copper. Mater Des 32(7):3772–3782. doi:10.1016/j.matdes.2011.03.045

    Article  Google Scholar 

  18. Faraji G, Mashhadi MM, Joo S-H, Kim HS (2012) The role of friction in tubular channel angular pressing. Rev Adv Mater Sci 31:12–18

    Google Scholar 

  19. Taylan Altan ERCNSMOSU, Gracious Ngaile NCSU, Gangshu Shen LCI (2004) Cold and hot forging: fundamentals and applications. Materials Park, Ohio

    Google Scholar 

  20. Hung J-c, Hung C (2000) The design and development of a hydrostatic extrusion apparatus. 104:226–235. doi:10.1016/S0924-0136(00)00593-8

  21. Skiba J, Pachla W, Mazur A, Przybysz S, Kulczyk M, Przybysz M, Wróblewska M (2014) Press for hydrostatic extrusion with back-pressure and the properties of thus extruded materials. J Mater Proc Technol 214(1):67–74. doi:10.1016/j.jmatprotec.2013.07.014

    Article  Google Scholar 

  22. Faraji G, Mashhadi MM, Kim HS (2011) Microstructure inhomogeneity in ultra-fine grained bulk AZ91 produced by accumulative back extrusion (ABE). Mater Sci Eng A 528(13–14):4312–4317. doi:10.1016/j.msea.2011.02.075

    Article  Google Scholar 

  23. Tobias SA (1968) The design and development of a hydrostatic extrusion machine. 8:125–140

  24. Hosseini SH, Abrinia K, Faraji G (2014) Applicability of a modified backward extrusion process on commercially pure aluminium. Mater Des. doi:10.1016/j.matdes.2014.09.043

    Google Scholar 

  25. Faraji G, Mashhadi MM, Kim HS (2012) Deformation behavior in tubular channel angular pressing (TCAP) using triangular and semicircular channels. Mater Trans 53(1):8–12. doi:10.2320/matertrans.MD201107

    Article  Google Scholar 

  26. Hung J-C, Hung C (2000) The design and development of a hydrostatic extrusion apparatus. J Mater Process Technol 104(3):226–235. doi:10.1016/S0924-0136(00)00593-8

    Article  Google Scholar 

  27. Faraji G, Mashhadi M, Kim H (2011) Microstructure inhomogeneity in ultra-fine grained bulk AZ91 produced by accumulative back extrusion (ABE). Mater Sci Eng A 528(13):4312–4317. doi:10.1016/j.msea.2011.02.075

    Article  Google Scholar 

  28. Thirumurugan M, Kumaran S (2013) Extrusion and precipitation hardening behavior of AZ91 magnesium alloy. Trans Nonferrous Metals Soc China (English Edition) 23 (6):1595–1601. doi:10.1016/S1003-6326(13)62636-9

  29. Alihosseini H, Zaeem MA, Dehghani K, Shivaee HA (2012) Producing ultra fine-grained aluminum rods by cyclic forward-backward extrusion: study the microstructures and mechanical properties. doi:10.1016/j.matlet.2012.01.102

  30. Haghdadi N, Zarei-Hanzaki A, Abou-Ras D (2013) Microstructure and mechanical properties of commercially pure aluminum processed by accumulative back extrusion. Mater Sci Eng A 584:73–81. doi:10.1016/j.msea.2013.06.060

    Article  Google Scholar 

  31. Haghdadi N, Zarei-Hanzaki A, Abou-Ras D, Maghsoudi MH, Ghorbani A, Kawasaki M (2014) An investigation into the homogeneity of microstructure, strain pattern and hardness of pure aluminum processed by accumulative back extrusion. Mater Sci Eng A 595:179–187. doi:10.1016/j.msea.2013.11.077

    Article  Google Scholar 

  32. Mesbah M, Faraji G, Bushroa AR (2014) Characterization of nanostructured pure aluminum tubes produced by tubular channel angular pressing (TCAP). Mater Sci Eng A 590:289–294. doi:10.1016/j.msea.2013.10.036

    Article  Google Scholar 

  33. Alihosseini H, Faraji G, Dizaji AF, Dehghani K (2012) Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE). Mater Charact 68:14–21. doi:10.1016/j.matchar.2012.03.004

    Article  Google Scholar 

  34. Dieter GE, Kuhn HA, Semiatin SL (2003) Handbook of workability and process design. ASM international

  35. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61(3):782–817. doi:10.1016/j.actamat.2012.10.038

    Article  Google Scholar 

  36. Xu C, Horita Z, Langdon TG (2007) The evolution of homogeneity in processing by high-pressure torsion. Acta Mater 55(1):203–212. doi:10.1016/j.actamat.2006.07.029

    Article  Google Scholar 

  37. Torabzadeh H, Faraji G, Zalnezhad E (2016) Cyclic flaring and sinking (CFS) as a new severe plastic deformation method for thin-walled cylindrical tubes. Trans Indian Inst Metals. doi:10.1007/s12666-015-0685-7

    Google Scholar 

  38. Zangiabadi A, Kazeminezhad M (2011) Development of a novel severe plastic deformation method for tubular materials: tube channel pressing (TCP). Mater Sci Eng A 528(15):5066–5072. doi:10.1016/j.msea.2011.03.012

    Article  Google Scholar 

  39. Satheesh Kumar SS, Raghu T (2015) Strain path effects on microstructural evolution and mechanical behaviour of constrained groove pressed aluminium sheets. Mater Des 88:799–809. doi:10.1016/j.matdes.2015.09.057

    Google Scholar 

  40. Lewandowska M, Kurzydlowski KJ (2008) Recent development in grain refinement by hydrostatic extrusion. J Mater Sci 43:7299–7306. doi:10.1007/s10853-008-2810-z

    Article  Google Scholar 

  41. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53(6):893–979. doi:10.1016/j.pmatsci.2008.03.002

    Article  Google Scholar 

  42. Xu C, Xia K, Langdon TG (2007) The role of back pressure in the processing of pure aluminum by equal-channel angular pressing. Acta Mater 55(7):2351–2360. doi:10.1016/j.actamat.2006.11.036

    Article  Google Scholar 

  43. Raab GJ, Valiev RZ, Lowe TC, Zhu YT (2004) Continuous processing of ultrafine grained Al by ECAP–conform. Mater Sci Eng A 382(1–2):30–34. doi:10.1016/j.msea.2004.04.021

    Article  Google Scholar 

  44. Zehetbauer MJ, Stüwe HP, Vorhauer A, Schafler E, Kohout J (2003) The role of hydrostatic pressure in severe plastic deformation. Adv Eng Mater 5:330–337. doi:10.1002/adem.200310090

    Article  Google Scholar 

  45. Pachla W, Kulczyk M, Sus-Ryszkowska M, Mazur A, Kurzydlowski KJ (2008) Nanocrystalline titanium produced by hydrostatic extrusion. J Mater Process Technol 205:173–182. doi:10.1016/j.jmatprotec.2007.11.103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Faraji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamali, S.S., Faraji, G. & Abrinia, K. Hydrostatic radial forward tube extrusion as a new plastic deformation method for producing seamless tubes. Int J Adv Manuf Technol 88, 291–301 (2017). https://doi.org/10.1007/s00170-016-8754-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8754-6

Keywords

Navigation