Skip to main content
Log in

Iterative pre-compensation scheme of tracking error for contouring error reduction

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Contouring errors calculated from the tracking errors of the individual servo drives is one of the important factors that affect machining accuracy. Through the pre-compensation of the tracking errors the contouring error can be reduced. This paper builds the prediction model of the tracking error, based on which iterative pre-compensation scheme is proposed, to achieve the optimum pre-compensation value without running servo drives repetitively. Simulation and experiment results verify that the tracking error can be predicted accurately by the prediction model and the iterative pre-compensation scheme of the tracking error can reduce the contouring error effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang LB, Wu T, Huang FL (2014) A coupling motional control method based on parametric predictive and variable universe fuzzy control for multi-axis CNC machine tools. Int J Adv Manuf Technol 74(5–8):1097–1114

    Article  Google Scholar 

  2. Xi XC, Poo AN, Hong GS, Huo F (2011) Experimental implementation of Taylor series expansion error compensation on a bi-axial CNC machine. Int J Adv Manuf Technol 53(1–4):285–299

    Article  Google Scholar 

  3. Koren Y (1980) Cross-coupled biaxial computer control for manufacturing system. ASME J Dyn Sys Meas Control 112:225–232

    MATH  Google Scholar 

  4. Yang JZ, Li ZX (2011) A novel contour error estimation for position loop-based cross-coupled control. IEEE/ASME Trans Mechatron 16(4):643––655

    Article  Google Scholar 

  5. Lee J, Dixon WE, Ziegert JC (2012) Adaptive nonlinear contour coupling control for a machine tool system. Int J Adv Manuf Technol 61:1057–1065

    Article  Google Scholar 

  6. Xi XC, Zhao WS, Poo AN (2015) Improving CNC contouring accuracy by robust digital integral sliding mode control. Int J Mach Tools Manuf 88(1):51–61

    Article  Google Scholar 

  7. Huo F, Poo AN (2013) Precision contouring control of machine tools. Int J Adv Manuf Technol 64(1–4):319–333

    Article  Google Scholar 

  8. Cheng MY, Lee CC (2007) Motion controller design for contour following tasks based on real-time contour error estimation. IEEE Trans Ind Electron 54(3):1686–1695

    Article  Google Scholar 

  9. Lou YJ, Meng H, Yang JZ, Li ZX, Gao J, Chen X (2014) Task polar coordinate frame-based contouring control of biaxial systems. IEEE Trans Ind Electron 61(7):3490–3501

    Article  Google Scholar 

  10. Zhang K, Yuen A, Altintas Y (2013) Pre-compensation of contour errors in five-axis CNC machine tools. Int J Mach Tools Manuf 74:1–11

    Article  Google Scholar 

  11. Yang SY, Ghasemi AH, Lu XX, Okwudire CE (2015) Pre-compensation of servo contour errors using a model predictive control framework. Int J Mach Tools Manuf 98:50–60

    Article  Google Scholar 

  12. Zhang DL, Chen YH, Chen YP (2015) A pre-compensation method of the systematic contouring error for repetitive command paths. Front Mech Eng 10(4):367–372

    Article  Google Scholar 

  13. Yang J, Altintas Y (2015) A generalized on-line estimation and control of five-axis contouring errors of CNC machine tools. Int J Mach Tools Manuf 88:9–23

    Article  Google Scholar 

  14. Lin CJ, Yau HT, Tian YC (2013) Identification and compensation of nonlinear friction characteristics and precision control for a linear motor stage. IEEE/ASME Trans Mechatron 18(4):1385–1396

    Article  Google Scholar 

  15. Xi XC, Poo AN, Hong GS (2010) Tracking error-based static friction compensation for a bi-axial CNC machine. Precis Eng 34(3):480–488

    Article  Google Scholar 

  16. Ramesh R, Mannan MA, Poo AN (2005) Tracking and contour error control in CNC servo systems. Int J Mach Tools Manuf 45:301–326

    Article  Google Scholar 

  17. Tomizuka M, Chen MS, Renn S, Tsao TC (1987) Tool positioning for noncircular cutting with lathe. J Dyn Sys, Meas Control, Trans ASME 109:176–179

    Article  Google Scholar 

  18. Vladimir S (1997) Least squares in identification theory. Kybernetika 13(2):83–105

    MathSciNet  MATH  Google Scholar 

  19. Yang SZ, Yang KC, et al. (2011) Control basics of mechanical engineering. Huazhong University of Science and Technology Press Co., Ltd (In Chinese)

  20. Shampine LF, Reichelt MW (1997) The MATLAB ODE suite. SIAM J Sci Comput 18:1–22

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang DL, Chen YP, Ai W et al (2007) Precision motion control of permanent magnet linear motors. Int J Adv Manuf Technol 35(3–4):301–308

    Article  Google Scholar 

  22. Huo F, Xi XC, Poo AN (2012) Generalized Taylor series expansion for free-form two-dimensional contour error compensation. Int J Mach Tools Manuf 53(1):91–99

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dailin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Chen, Y. & Chen, Y. Iterative pre-compensation scheme of tracking error for contouring error reduction. Int J Adv Manuf Technol 87, 3279–3288 (2016). https://doi.org/10.1007/s00170-016-8735-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8735-9

Keywords

Navigation