Skip to main content
Log in

Influence of process parameters on kerf geometry and surface roughness in Nd:YAG laser cutting of Al 6061T6 alloy sheet

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the present study, fine laser cutting of aluminium alloy 6061-T6 sheets, characterised by light reflection and heat conductivity, by means of a 150-W multimode lamp pumped Nd:YAG laser is investigated through an experimental testing campaign. Design of experiments (DoE) and analysis of variance (ANOVA) are adopted to study the influence of the process parameters on the kerf geometry and surface roughness. The results show that the laser allows cutting 1-mm-thick AA6061-T6 sheets with a cutting speed up to 700 mm/min, obtaining narrow kerfs (smaller than 200 μm), a fine taper angle (lower than 4°), a low dross height (about 40 μm) and a roughness average, Ra, around 4 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stournaras A, Stavropoulos P, Salonitis K, Chryssolouris G (2009) An investigation of quality in CO2 laser cutting of aluminium. Cirp J Manuf Sci Technol 2:61–69. doi:10.1016/j.cirpj.2009.08.005

    Article  Google Scholar 

  2. Kalpakjian S, Schmid SR (2013) Manufacturing engineering and technology (7th Edition), Prentice Hall, USA, ISBN: 9780133128741

  3. Salonitis K, Stournaras A, Tsoukantas G, Stavropoulos P, Chryssolouris G (2007) A theoretical and experimental investigation on limitations of pulsed laser drilling. J Mater Process Technol 183:96–103. doi:10.1016/j.jmatprotec.2006.09.031

    Article  Google Scholar 

  4. Dubey AK, Yadava V (2008) Laser beam machining—a review. Int J Mach Tools Manuf 48:609–628. doi:10.1016/j.ijmachtools.2007.10.017

    Article  Google Scholar 

  5. Astarita A, Genna S, Leone C, Memola CMF, Paradiso V, Squillace A (2013) Ti-6Al-4V cutting by 100W fibre laser in both CW and modulated regime. Key Eng Mater 554-557:1835–1844. doi:10.4028/www.scientific.net/KEM.554-557.1835

    Article  Google Scholar 

  6. Morace RE, Leone C, De Iorio I, (2006) Cutting of thin metal sheets using Nd:YAG lasers with different pulse duration. In: PROC OF SPIE, 6157 workshop on laser applications in Europe, Dresden, Germany, 23 November 2005. doi:10.1117/12.661182

  7. Astarita A, Genna S, Leone C, Minutolo F, Paradiso V, Squillace A (2014) Laser cutting of aluminium sheets with a superficial cold spray titanium coating. Key Eng Mater 611-612:794–803. doi:10.4028/www.scientific.net/KEM.611-612.794

    Article  Google Scholar 

  8. Lutey AHA, Fortunato A, Ascari A, Carmignato S, Leone C (2015) Laser cutting of lithium iron phosphate battery electrodes: characterization of process efficiency and quality. Opt Laser Technol 65:164–174. doi:10.1016/j.optlastec.2014.07.023

    Article  Google Scholar 

  9. Tonshoff HK, Emmelmann C (1989) Laser cutting of advanced ceramics. Cirp Ann Manuf Technol 38:219–222. doi:10.1016/S0007-8506(07)62689-4

    Article  Google Scholar 

  10. Quintero F, Pou J, Lusquiños F, Boutinguiza M, Sot R, Pérez-Amor M (2001) Nd:YAG laser cutting of advanced ceramics. Proc SPI0045 4419:756–760. doi:10.1117/12.437083

    Google Scholar 

  11. Leone C, Pagano N, Lopresto V, De Iorio I (2009) Solid state Nd:YAG laser cutting of CFRP sheet: influence of process parameters on kerf geometry and HAZ, 17th Int. Conf. on Composite Materials - ICCM-17, July 27-31, Edinburgh, UK, Code 85394, pp. 1–10

  12. Leone C, Genna S, Tagliaferri V (2014) Fibre laser cutting of CFRP thin sheets by multi-passes scan technique. Opt Lasers Eng 53:43–50. doi:10.1016/j.optlaseng.2013.07.027

    Article  Google Scholar 

  13. Chen SL (1999) The effects of high-pressure assistant-gas flow on high-power CO2 laser cutting. J Mater Process Techol 88(1):57–66. doi:10.1016/S0924-0136(98)00402-6

    Article  Google Scholar 

  14. Lamikiz A, Lacalle LNL, Sanchez JA, Pozo D, Etayo JM, Lopez JM (2005) CO2 laser cutting of advanced high strength steels (AHSS). Appl Surf Sci 242:362–368. doi:10.1016/j.apsusc.2004.08.039

    Article  Google Scholar 

  15. Rajaram N, Ahmad JS, Cheraghi SH (2003) CO2 laser cut quality of 4130 steel. Int J Mach Tools Manuf 43:351–358. doi:10.1016/S0890-6955(02)00270-5

    Article  Google Scholar 

  16. Karatas C, Keles O, Uslan I, Usta Y (2006) Laser cutting of steel sheets: influence of workpiece thickness and beam waist position on kerf size and striation formation. J Mater Process Technol 172:22–29. doi:10.1016/j.jmatprotec.2005.08.017

    Article  Google Scholar 

  17. Chryssolouris G (1991) Laser machining: theory and practice (Mechanical Engineering Series). Springer, New York. ISBN 978-0387974989

    Book  Google Scholar 

  18. Steen WM, Mazumder J (2010) Laser material processing, IVth edn. Springer-Verlag, London. ISBN 9781849960618

    Book  Google Scholar 

  19. Ready JF, Farson DF, (2001) LIA Handbook of Laser Materials Processing, Springer-Verlag Berlin and Heidelberg GmbH & Co. U.K., ISBN: 978-3-540-41770-5

  20. Thawari G, Sundar JKS, Sundararajan G, Joshi SV (2005) Influence of process parameters during pulsed Nd:YAG laser cutting of nickel-base superalloys. J Mater Process Technol 170:229–239. doi:10.1016/j.jmatprotec.2005.05.021

    Article  Google Scholar 

  21. Ghany KA, Newishy M (2005) Cutting of 1.2 mm thick austenitic stainless steel sheet using pulsed and CW Nd:YAG laser. J Mater Process Technol 168:438–447. doi:10.1016/j.jmatprotec.2005.02.251

    Article  Google Scholar 

  22. Araújo D, Carpio FJ, Méndez D, García AJ, Villar MP, García R, Jiménez D, Rubio L (2003) Microstructural study of CO2 laser machined heat affected zone of 2024 aluminum alloy. Appl Surf Sci 208-209(1):210–217. doi:10.1016/S0169-4332(02)01375-2

    Article  Google Scholar 

  23. Riveiro A, Quintero F, Lusquiños F, Pou J, Pérez-Amor M (2008) Laser cutting of 2024-T3 aeronautic aluminum alloy. J Laser Appl 20(4):230–235. doi:10.2351/1.2995769

    Article  Google Scholar 

  24. Dubey AK, Yadava V (2008) Optimization of kerf quality during pulsed laser cutting of aluminum alloy sheet. J Mater Process Technol 204:412–418. doi:10.1016/j.jmatprotec.2007.11.048

    Article  Google Scholar 

  25. Sharma A, Yadava V (2012) Modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for straight profile. Opt Lasers Techno 44(1):159–168. doi:10.1016/j.optlastec.2011.06.012

    Article  Google Scholar 

  26. Sharma A, Yadava V (2013) Modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for curved profile. Opt Lasers Eng 51(1):77–88. doi:10.1016/j.optlaseng.2012.07.012

    Article  Google Scholar 

  27. Ion JC (2005) Laser processing of engineering materials, principles, procedure and industrial application. Butterworth-Heinemann Ltd, Burlington, USA, ISBN: 0-7506-6079-1

  28. Rajpurohit SR, Patel DM (2012) Striation mechanism in laser cutting—the review. Int J Eng Res App 2(2):457–461

    Google Scholar 

  29. Miyamoto I, Maruo H (1991) The mechanism of laser cutting. Weld World 29(9-10):283–294

    Google Scholar 

  30. Ivarson A, Powell J, Kamalu J, Magnusson C (1994) The oxidation dynamics of laser cutting of mild steel and the generation of striations on the cut edge. J Mater Process Technol 40:359–374. doi:10.1016/0924-0136(94)90461-8

    Article  Google Scholar 

  31. Kim BC, Kim T, Jang Y, Chung K (2001) Investigation of striation formation in thin stainless steel tube during pulsed Nd:YAG laser cutting process by Numerical analysis. Metall Mater Trans A 32(10):2623–2625. doi:10.1007/s11661-001-0052-7

    Article  Google Scholar 

  32. Paschotta R (2008) Encyclopedia of laser physics and technology. 1st edition. Wiley-VCH, Berlin, ISBN: 978-3-527-40828-3

  33. Leone C, Genna S, Caggiano A, Tagliaferri V, Molitierno R, (2015) An investigation on Nd:YAG laser cutting of Al 6061 T6 alloy sheet. In: 3rd CIRP global web conference on production engineering research: advancement beyond state of the art, CIRPe 2014, 3-5 June 2014, vol 28. PROCEDIA CIRP, Naples, Italy, pp. 64–69. doi:10.1016/j.procir.2015.04.012

  34. Metals Handbook (1990) Vol. 2—Properties and selection: nonferrous alloys and special-purpose materials. 10th Ed., ASM International

  35. Montgomery DC (2008) Design and analysis of experiments. Wiley, New York. ISBN 0471316490

    Google Scholar 

  36. Genna S, Leone C, Palumbo B, Tagliaferri F (2015) Statistical Approach to fiber laser microcutting of NIMONIC® C263 superalloy sheet used in effusion cooling system of aero engines. Procedia Cirp 33:520–525. doi:10.1016/j.procir.2015.06.067

    Article  Google Scholar 

  37. Dittrich M, Dix M, Kuhl M, Palumbo B, Tagliaferri F (2014) Process analysis of water abrasive fine jet structuring of ceramic surfaces via design of experiment. Procedia Cirp 14:442–447. doi:10.1016/j.procir.2014.03.030

    Article  Google Scholar 

  38. Rao BT, Kaul R, Tiwari P, Nath AK (2005) Inert gas cutting of titanium sheet with pulsed mode CO2 laser. Opt Lasers Eng 43(12):1330–1348. doi:10.1016/j.optlaseng.2004.12.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Leone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leone, C., Genna, S., Caggiano, A. et al. Influence of process parameters on kerf geometry and surface roughness in Nd:YAG laser cutting of Al 6061T6 alloy sheet. Int J Adv Manuf Technol 87, 2745–2762 (2016). https://doi.org/10.1007/s00170-016-8667-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8667-4

Keywords

Navigation