Skip to main content
Log in

A comprehensive experimental investigation on the influences of the process variables on warm incremental forming of Ti-6Al-4V titanium alloy using a simple technique

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The incremental forming has recently acquired a significant importance in various applications, such as automotive, aerospace, and medical industries. The present investigation is concerned with the warm incremental forming of Ti-6Al-4V titanium alloy. With this regard, the groove test was employed as a simple technique to study the effects of different variables, namely, the process temperature, the vertical pitch, and the tool diameter, on the forming limit diagram of the material, the springback, drawing depth, final temperature of the sheet, and the thickness variation of the product. The sheet temperature was the most important parameter affected by the interfacial friction and the other process variables. The experimental findings illustrated that the greater the vertical pitch and/or the tool diameter, the larger the formability and drawing depth of the sheet sample before its fracture. Moreover, decreasing the tool diameter and increasing the vertical pitch and the initial process temperature resulted in more thickness reduction. The actual process temperature simultaneously affected the elastic modulus and the flow stress of the component. However, the flow stress reduction due to the temperature rise overcame the elastic modulus decrease and, finally, the springback was lower at higher process temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP AnnManuf Technol 54(2):88–114

    Article  Google Scholar 

  2. Reddy NV, Cao J (2009) Incremental sheet metal forming: a review. Department of Mechanical Engineering Indian, Institute of Technology Kanpur, Kanpur

    Google Scholar 

  3. Lu B, Fang Y, Xu D, Chen J, Ai S, Long H, Ou H, Cao J (2015) Investigation of material deformation mechanism in double side incremental sheet forming. Int J Mach Tools Manuf 93:37–48

    Article  Google Scholar 

  4. Fang Y, Lu B, Chen J, Xu D, Ou H (2014) Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming. J Mater Process Technol 214(8):1503–1515

    Article  Google Scholar 

  5. Martins P, Bay N, Skjødt M, Silva M (2008) Theory of single point incremental forming. CIRP Ann Manuf Technol 57(1):247–252

    Article  Google Scholar 

  6. Hirt G, Ames J, Bambach M, Kopp R (2004) Forming strategies and process modelling for CNC incremental sheet forming. CIRP Ann Manuf Technol 53(1):203–206

    Article  Google Scholar 

  7. Yamashita M, Gotoh M, Atsumi S-Y (2008) Numerical simulation of incremental forming of sheet metal. J Mater Process Technol 199(1):163–172

    Article  Google Scholar 

  8. Kopac J, Kampus Z (2005) Incremental sheet metal forming on CNC milling machine-tool. J Mater Process Technol 162:622–628

    Article  Google Scholar 

  9. Kurra S, Rahman NH, Regalla SP, Gupta AK (2015) Modeling and optimization of surface roughness in single point incremental forming process. J Mater Res Technol

  10. Bagudanch I, Garcia-Romeu M, Centeno G, Elías-Zúñiga A, Ciurana J (2015) Forming force and temperature effects on single point incremental forming of polyvinylchloride. J Mater Process Technol 219:221–229

    Article  Google Scholar 

  11. Franzen V, Kwiatkowski L, Martins P, Tekkaya A (2009) Single point incremental forming of PVC. J Mater Process Technol 209(1):462–469

    Article  Google Scholar 

  12. Minutolo FC, Durante M, Formisano A, Langella A (2007) Evaluation of the maximum slope angle of simple geometries carried out by incremental forming process. J Mater Process Technol 194(1):145–150

    Article  Google Scholar 

  13. Ambrogio G, Filice L, Manco G (2008) Warm incremental forming of magnesium alloy AZ31. CIRP Ann Manuf Technol 57(1):257–260

    Article  Google Scholar 

  14. Duflou J, Callebaut B, Verbert J, De Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann Manuf Technol 56(1):273–276

    Article  Google Scholar 

  15. Fan G, Sun F, Meng X, Gao L, Tong G (2010) Electric hot incremental forming of Ti-6Al-4V titanium sheet. Int J Adv Manuf Technol 49(9-12):941–947

    Article  Google Scholar 

  16. Shi X, Gao L, Khalatbari H, Xu Y, Wang H, Jin L (2013) Electric hot incremental forming of low carbon steel sheet: accuracy improvement. Int J Adv Manuf Technol 68(1-4):241–247

    Article  Google Scholar 

  17. Fan G, Gao L, Hussain G, Wu Z (2008) Electric hot incremental forming: a novel technique. Int J Mach Tools Manuf 48(15):1688–1692

    Article  Google Scholar 

  18. Ambrogio G, Filice L, Gagliardi F (2012) Formability of lightweight alloys by hot incremental sheet forming. Mater Des 34:501–508

    Article  Google Scholar 

  19. Zhang Q, Xiao F, Guo H, Li C, Gao L, Guo X, Han W, Bondarev A (2010) Warm negative incremental forming of magnesium alloy AZ31 sheet: new lubricating method. J Mater Process Technol 210(2):323–329

    Article  Google Scholar 

  20. Ji Y, Park J (2008) Incremental forming of free surface with magnesium alloy AZ31 sheet at warm temperatures. Trans Nonferrous Metals Soc China 18:s165–s169

    Article  Google Scholar 

  21. Zhang Q, Guo H, Xiao F, Gao L, Bondarev A, Han W (2009) Influence of anisotropy of the magnesium alloy AZ31 sheets on warm negative incremental forming. J Mater Process Technol 209(15):5514–5520

    Article  Google Scholar 

  22. Ji Y, Park J (2008) Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. J Mater Process Technol 201(1):354–358

    Article  MathSciNet  Google Scholar 

  23. Kim Y, Park J (2002) Effect of process parameters on formability in incremental forming of sheet metal. J Mater Process Technol 130:42–46

    Article  Google Scholar 

  24. Palumbo G, Brandizzi M (2012) Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed. Mater Des 40:43–51

    Article  Google Scholar 

  25. Fratini L, Ambrogio G, Di Lorenzo R, Filice L, Micari F (2004) Influence of mechanical properties of the sheet material on formability in single point incremental forming. CIRP Ann Manuf Technol 53(1):207–210

    Article  Google Scholar 

  26. American Society for Testing and Materials (ASTM) (2010) E8 Standard Test Methods of Tension Testing of Metallic Materials. Ann Book ASTM Standards 3:01

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fereshteh-Saniee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazaali, H., Fereshteh-Saniee, F. A comprehensive experimental investigation on the influences of the process variables on warm incremental forming of Ti-6Al-4V titanium alloy using a simple technique. Int J Adv Manuf Technol 87, 2911–2923 (2016). https://doi.org/10.1007/s00170-016-8665-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8665-6

Keywords

Navigation