Advertisement

Simulation and validation of diagram ladder—petri nets

  • J. C. QuezadaEmail author
  • J. Medina
  • E. Flores
  • J. C. Seck Tuoh
  • A. E. Solís
  • V. Quezada
ORIGINAL ARTICLE

Abstract

Automated systems based on programmable logic controllers (PLC) are still applied in discrete event systems (DES) for controlling and monitoring of industrial processes signals. PLC-based control systems are characterized for having physical input and output signals coming from and going to sensors and actuators, respectively, which they are in direct contact with the production or manufacturing process. The input subsystem to PLC consists of sensor-wiring-physical inputs module, and it can present two kinds of faults: short circuit or open circuit, in one or more signals of the process physical inputs, which it causes faults in the control and/or in the control algorithms behavior. Ladder diagram (LD) is one of the five programming languages supported by the International Electrotechnical Commission (IEC) through the IEC-61131-3 standard, and it remains being used at industry for control algorithm design of PLC-based systems. This paper proposes the simulation and validation of control algorithms developed in LD by using Petri Nets (PN) in order to deal with the possible fault options (short circuit and/or open circuit) in the physical inputs subsystem of a PLC-based control system. One control algorithms in LD have been analyzed in order to show the advantages of the proposed approach.

Keywords

Control algorithms Discrete event systems Ladder diagram Petri nets Programmable logic controller Simulation Validation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Electrotechnical Commision IEC 61131-3 (2003) Programmable Controllers: Programming Languages, International standard, segunda ediciónGoogle Scholar
  2. 2.
    Barbosa H, Déharbe D (2012) Formal verification of PLC programs using the B method, Lecture Notes Computer Science, vol 7316, pp 353–356Google Scholar
  3. 3.
    Wang R, Zhou M, Yin L, Zhang L, Sun J, Ming G (2012) Modeling and validation of PLC-controlled systems: a case study. In: IEEE 6th international symposium on theoretical aspects of software engineering, pp 161–166Google Scholar
  4. 4.
    Grobelna I, Grobelny M, Adamski M (2010) Petri nets and activity diagrams in logic controller specification - transformation and verification. In: 607–612Google Scholar
  5. 5.
    Ljungkrantz O, Akesson K, Fabian M, Yuan C (2010) Formal specification and verification of industrial control logic components. IEEE Trans Autom Sci Eng 7(3):538–548CrossRefGoogle Scholar
  6. 6.
    Park SC, Park CM, Wang G (2008) PLCStudio: simulation based PLC code verification. In: Winter simulation conference, pp 222–228Google Scholar
  7. 7.
    Thapa D, Park CM, Dangol S, Wang G (2006) III-phase verification and validation of IEC standard programmable logic controller. In: International conference on computational intelligence for modelling control and automation,and international conference on intelligent agents, web technologies and internet commerceGoogle Scholar
  8. 8.
    Hou Y, Cheng Q, Qiu A, Jin Y (2015) A new method of sensor fault diagnosis for under-measurement system based on space geometry approach. Int J Control Autom Syst 13(1):39–44CrossRefGoogle Scholar
  9. 9.
    Bao J, Wu H, Yan Y (2014) A fault diagnosis system-PLC design for system reliability improvement. Int J Adv Manuf TechnolGoogle Scholar
  10. 10.
    Huai L, Cheng C (2013) Reliability design of PLC-based control system. In: IEEE 9th international conference on natural computation, pp 1671–1675Google Scholar
  11. 11.
    Kuzmin EV, Sokolov VA (2013) On construction and verification of PLC programs. Autom Control Comput Sci 47(7):443–451CrossRefGoogle Scholar
  12. 12.
    Qin S, Wang G (2012) A study of fault detection and diagnosis for PLC controlled manufacturing system. In: IEEE international conference semantic computating, Part I, pp 373–382Google Scholar
  13. 13.
    Wu Z, Hsieh S (2012) A realtime fuzzy Petri net diagnoser for detecting progressive faults in PLC based discrete manufacturing system. Int J Adv Manuf Technol 61:405–421CrossRefGoogle Scholar
  14. 14.
    Malik AH, Mehmood T, Choudhry MA, Hanif A (2010) A generic procedure for troubleshooting of PLC based control systems. In: IEEE 11th international conference control, automation, robotics and vision, pp 732–737Google Scholar
  15. 15.
    IEEE Recommended Practice for Validation of Computational Electromagnetics Computer Modeling and Simulations, IEEE Std 1597.2-2010,pp 1,124 (2011)Google Scholar
  16. 16.
    International Electrotechnical Commision IEC 61131-1 (2003) General Information, International standard, segunda ediciónGoogle Scholar
  17. 17.
    International Electrotechnical Commision IEC 61131-8: Programmable Controllers (2003) Guidelines for the application and implementation of programming languages, international standard, segunda ediciónGoogle Scholar
  18. 18.
    Quezada JC, Medina J, Flores E, Seck Tuoh JC, Hernández N (2014) Formal desing methodology for transforming ladder diagram to Petri nets. Int J Adv Manuf Technol 73: 821–836CrossRefGoogle Scholar
  19. 19.
    Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77(4):541–580CrossRefGoogle Scholar
  20. 20.
    Lee J, Lee JS (2009) Conversion of ladder diagram to petri net using module synthesis technique. Int J Model Simul 29(1)Google Scholar
  21. 21.
    Mandado E, Acevedo JM, Fernández C, Armesto JI Autómatas Programables y Sistemas de Automatización, Segunda edición, Alfaomega, ISBN: 978-607-7686-73-6Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • J. C. Quezada
    • 1
    Email author
  • J. Medina
    • 2
  • E. Flores
    • 1
  • J. C. Seck Tuoh
    • 2
  • A. E. Solís
    • 1
  • V. Quezada
    • 1
  1. 1.Escuela Superior de TizayucaUniversidad Autónoma del Estado de HidalgoHidalgoMéxico
  2. 2.Centro de Investigación Avanzada en Ingenieria IndustrialUniversidad Autónoma del Estado de HidalgoHidalgoMexico

Personalised recommendations