Skip to main content
Log in

Application of cuckoo search algorithm to constrained control problem of a parallel robot platform

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a cascade load force control design for a parallel robot platform. A parameter search for a proposed cascade controller is difficult because there is no methodology to set the parameters and the search space is broad. A parameter search based on cuckoo search (CS) is suggested to effectively search parameters of the cascade controllers. The control design problem is formulated as an optimization problem under constraints. Typical constraints, such as mechanical limits on positions and maximal velocities of hydraulic actuators as well as on servo-valve positions, are included in the proposed algorithm. The optimal results are compared to the state-of-the-art algorithms for these problem instances (NP-hard and constrained optimization problems). Simulation results also show that applied optimal tuned cascade control algorithm exhibits a significant performance improvement over classical tuning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Stewart D (1965) A platform with six degrees of freedom. Proc Inst Mech Eng 180(15):371–386

    Article  Google Scholar 

  2. Pi Y, Wang X (2011) Trajectory tracking control of a 6-DOF hydraulic parallel robot manipulator with uncertain load disturbances. Control Eng Pract 19(2):185–193

    Article  Google Scholar 

  3. Stefanovic M, Zhang H (2012) Results on the robust observer-based position controller for parallel kinematic machines. J Intell Robot Syst 66:417–428

    Article  MATH  Google Scholar 

  4. Su YX, Duan DY, Zheng CH (2004) Nonlinear PID control of a six-DOF parallel manipulator. Control Theory and Applications, IEE Proceedings 151(1):95–102

    Article  Google Scholar 

  5. Dihovicni D, Nedic N (2008) Simulation, animation and program support for a high performance pneumatic force actuator system. Math Comput Model 48(5–6):761–768

    Article  Google Scholar 

  6. Filipovic V, Nedic N, Stojanovic V (2011) Robust identification of pneumatic servo actuators in the real situations. Forsch Ingenieurwes 75(4):183–196

    Article  Google Scholar 

  7. Filipovic V, Nedic N (2008) PID regulators. Faculty of Mechanical Engineering, Kraljevo, Serbia

    Google Scholar 

  8. Guo HB, Liu YG, Liu GR, Li HR (2008) Cascade control of a hydraulically driven 6-DOF parallel robot manipulator based on a sliding mode. Control Eng Pract 16(9):1055–1068

    Article  Google Scholar 

  9. Heintze J, Teerhuis PC, Van der Weiden AJJ (1996) Controlled hydraulics for a direct drive brick laying robot. Autom Constr 5:23–29

    Article  Google Scholar 

  10. Sepehri N, Dumont GAM, Lawrence PD, Sassani F (1990) Cascade control of hydraulically actuated manipulators. Robotica 8:207–216

    Article  Google Scholar 

  11. Rao SS (2009) Engineering optimization: theory and practice. Wiley, New York

    Book  Google Scholar 

  12. Doncieux S, Bredeche N, Mouret JB (2011) New horizons in evolutionary robotics: extended contributions from the 2009 EvoDeRob workshop (studies in computational intelligence). Springer -Verlag, Berlin Heidelberg

    Book  Google Scholar 

  13. Chen CT (2012) Reconfiguration of a parallel kinematic manipulator for the maximum dynamic load-carrying capacity. Mech Mach Theory 54:62–75

    Article  Google Scholar 

  14. Geng L, Liu PL, Liu K (2015) Optimization of cutter posture based on cutting force prediction for five-axis machining with ball-end cutters. Int J Adv Manuf Technol. doi:10.1007/s00170-014-6719-1

    Google Scholar 

  15. Kucuk S (2013) Energy minimization for 3-RRR fully planar parallel manipulator using particle swarm optimization. Mech Mach Theory 62:129–149

    Article  Google Scholar 

  16. Yu M, Zhang Y, Chen K, Zhang D (2014) Integration of process planning and scheduling using a hybrid GA/PSO algorithm. Int J Adv Manuf Technol. doi:10.1007/s00170-014-6669-7

    Google Scholar 

  17. Lou Y, Zhang Y, Huang R, Chen X, Li Z (2014) Optimization algorithms for kinematically optimal design of parallel manipulators. IEEE Trans Autom Sci Eng 11(2):574–584

    Article  Google Scholar 

  18. Saputra VB, Ong SK, Nee AY (2010) A PSO algorithm for mapping the workspace boundary of parallel manipulators. IEEE International Conference on Robotics and Automation. 4691 – 4696

  19. Mesloub H, Benchouia MT, Goléa A, Goléa N, Benbouzid MEH (2016) Predictive DTC schemes with PI regulator and particle swarm optimization for PMSM drive: comparative simulation and experimental study. Int J Adv Manuf Technol. doi:10.1007/s00170-016-8406-x

    Google Scholar 

  20. Glattfelder AH, Schaufelberger W (2013) Control systems with input and output constraints (advanced textbooks in control and signal processing). Springer -Verlag, London

    MATH  Google Scholar 

  21. Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: Proceedings of world congress on nature & biologically inspired computing, December 2009, India. IEEE Publications, USA, pp 210–214

    Chapter  Google Scholar 

  22. Yang XS, Deb S (2010) Engineering optimisation by Cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation 2(4):330–343

    Article  MATH  Google Scholar 

  23. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceeding of IEEE International Conference on NeuralNetworks 4:1942–1948

    Google Scholar 

  24. Shi Y, Eberhart RC (1998) In: Porto VW, Saravanan N, Waagen D, Eibe A (eds) Parameter selection in particle swarm optimization, proceedings of the seventh annual conference on evolutionary programming. Springer-Verlag, Berlin, Germany, pp 591–600

    Google Scholar 

  25. Goldberg DE (1989) Genetic algorithms in search, optimisation and machine learning, reading, mass.: Addison Wesley

  26. Rao SS, Pan TS, Venkayya VB (1991) Optimal placement of actuators in actively controlled structures using genetic algorithms. AIAA J 29(6):942–943

    Article  Google Scholar 

  27. Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  28. Rao SS, Pan TS, Dhingra AK, Venkayya VB, Kumar V (1990) Genetic evolution-based optimization methods for engineering design. Proceedings of the 3rd Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, San Francisco, pp 318–323

    Google Scholar 

  29. Hajela P (1990) Genetic search: an approach to the nonconvex optimization problem. AIAA J 26(7):1205–1210

    Article  Google Scholar 

  30. Lin CY, Hajela P (1992) Genetic algorithms in optimization problems with discrete and integer design variables. Eng Optim 19:309–327

    Article  Google Scholar 

  31. Zalzala AMS, Fleming PJ (1997) Genetic algorithms in engineering systems. The Institution of Electrical Engineers (IEE), London

    Book  MATH  Google Scholar 

  32. Nasiri MM (2013) A pseudo particle swarm optimization for the RCPSP. Int J Adv Manuf Technol 65:909–918

    Article  Google Scholar 

  33. Li X, Gao L, Wen X (2013) Application of an efficient modified particle swarm optimization algorithm for process planning. Int J Adv Manuf Technol 67:1355–1369

    Article  Google Scholar 

  34. Jelali M, Kroll A (2002) Hydraulic servo-systems. Springer, Berlin

    Google Scholar 

  35. Pavlyukevich I (2007) Lévy flights, non-local search and simulated annealing. J Comput Phys 226(2):1830–1844

    Article  MathSciNet  MATH  Google Scholar 

  36. Cominos P, Munro N (2002) PID controllers: recent tuning methods and design to specification. Control Theory and Applications, IEEE Proceedings 149(1):46–53

    Article  Google Scholar 

  37. Omran A, Kassem A (2011) Optimal task space control design of a Stewart manipulator for aircraft stall recovery. Aerosp Sci Technol 15:353–365

    Article  Google Scholar 

  38. Omran A, Kassem A, El-Bayoumi G, Bayoumi M (2009) Mission-based optimal control of Stewart manipulator. Aircraft Engineering & Aerospace Technology Journal 81(3):147–153

    Google Scholar 

  39. Yang XS (2014) Nature-inspired optimization algorithms. Elsevier

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Stojanovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanovic, V., Nedic, N., Prsic, D. et al. Application of cuckoo search algorithm to constrained control problem of a parallel robot platform. Int J Adv Manuf Technol 87, 2497–2507 (2016). https://doi.org/10.1007/s00170-016-8627-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8627-z

Keywords

Navigation