Skip to main content
Log in

Improved seizure resistance of ultra-high-strength steel ironed cups with a lubricant containing SiO2 nanoparticles

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Good boundary lubrication is necessary during cold stamping of high-strength steel sheets to prevent die wear and seizure of the parts owing to the high contact pressure. This study is aimed to improve the seizure resistance in a 1-step combined process of deep drawing and ironing of ultra-high-strength steel cylindrical cups using a commercial lubricant containing SiO2 nanoparticles with an uncoated die. In this study, the extreme pressure performance of the lubricant containing 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5 wt% of SiO2 was first evaluated using a deep drawing process under increased blank holding forces. The optimum concentration of SiO2 was determined, i.e. 2 wt%, based on successful drawing of cups having smooth surfaces under the highest holding force. Then, the ironing limits of the cups for the lubricants containing 0 and 2 wt% of SiO2 respectively were investigated with the 1-step combined process under increased ironing ratios. The experimental results showed that seizure was observed for the lubricant containing no nanoparticles at an ironing ratio of −16.7 %. However, no seizures were observed for ironing ratios up to 4.2 % using the lubricant containing 2 wt% of SiO2. The resistance to seizure of the cup was significantly increased, leading to the formation of cylindrical cups having smooth surfaces and uniform side wall thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vižintin J (2004) Oil surface: additive reaction mechanisms. In: Totten GE, Liang H (eds) Surface modification and mechanisms. Marcel Dekker, New York, pp 243–298

    Google Scholar 

  2. Martin JM, Grossiord C, Le-Mogne T, Igarashi J (2000) Transfer films and friction under boundary lubrication. Wear 245(1–2):107–115. doi:10.1016/S0043-1648(00)00471-3

    Article  Google Scholar 

  3. Willermet PA, Dailey DP, Carter RO, Schmitz PJ, Zhu W (1995) Mechanism of formation of antiwear films from Zinc Dialkyldithiophosphates. Tribol Int 28(3):177–187. doi:10.1016/0301-679X(95)98965-G

    Article  Google Scholar 

  4. De Barros MI, Bouchet J, Raoult I, Le-Mogne T, Martin JM, Kasrai M, Yamada Y (2003) Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses. Wear 254(9):863–870. doi:10.1016/S0043-1648(03)00237-0

    Article  Google Scholar 

  5. Wagner S, Kleinert H, Zimmermann R (2002) Dry film lubricants for sheet metal forming. In: Proceedings of international conference of new developments in sheet forming. University of Stuttgart, Germany, pp 451–472

    Google Scholar 

  6. Kim H, Sung JH, Sivakumar R, Altan T (2007) Evaluation of stamping lubricants using the deep drawing test. Int J Mach Tools Manuf 47(14):2120–2132. doi:10.1016/j.ijmachtools.2007.04.014

    Article  Google Scholar 

  7. Kim H, Altan T, Yan Q (2009) Evaluation of stamping lubricants in forming advanced high strength steels (AHSS) using deep drawing and ironing tests. J Mater Process Technol 209(8):4122–4133. doi:10.1016/j.jmatprotec.2008.10.007

    Article  Google Scholar 

  8. Abe Y, Ohmi T, Mori K, Masuda T (2014) Improvement of formability in deep drawing of ultra-high strength steel sheets by coating of die. J Mater Process Technol 214(9):1838–1843. doi:10.1016/j.jmatprotec.2014.03.023

    Article  Google Scholar 

  9. Hou Y, Zhang W, Yu Z, Li S (2009) Selection of tool materials and surface treatments for improved galling performance in sheet metal forming. Int J Adv Manuf Technol 43(9):1010–1017. doi:10.1007/s00170-008-1780-2

    Article  Google Scholar 

  10. Tan CJ, Chong WT, Hassan MA (2013) End formation of a round tube into a square section having small corner radii. J Mater Process Technol 213(9):1465–1474. doi:10.1016/j.jmatprotec.2013.03.021

    Article  Google Scholar 

  11. Tan CJ, Purbolaksono J, Chong WT (2015) Forming box-shaped ends in circular tubes. Int J Precis Eng Manuf 16(9):1975–1981. doi:10.1007/s12541-015-0257-0

    Article  Google Scholar 

  12. Sarhan AAD, Sayuti M, Hamdi M (2012) Reduction of power and lubricant oil consumption in milling process using a new SiO2 nanolubrication system. Int J Adv Manuf Technol 63(5–8):505–512. doi:10.1007/s00170-012-3940-7

    Article  Google Scholar 

  13. Sia SY, Bassyony EZ, Sarhan AAD (2014) Development of SiO2 nanolubrication system to be used in sliding bearings. Int J Adv Manuf Technol 71(5):1277–1284. doi:10.1007/s00170-013-5566-9

    Article  Google Scholar 

  14. Ito K, Adachi K, Kato K (2006) Friction of Si3N4 ball / Si3N4 disk sliding in water with SiO2 nano-particles. Tribol Online 1(2):34–39. doi:10.2474/trol.1.34

    Article  Google Scholar 

  15. Jiao D, Zheng S, Wang Y, Guan R, Cao B (2011) The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl Surf Sci 257(13):5720–5725. doi:10.1016/j.apsusc.2011.01.084

    Article  Google Scholar 

  16. Kobayashi K, Hironaka S, Suzue M, Ohta Y (2004) Lubricities of SiO2 particles coated with carbon. J Ceram Soc Jpn 112(4):210–213, in Japanese

    Article  Google Scholar 

  17. Hosoe H, Hiratsuka K, Minami I, Hironaka S (1997) Lubricities of super fine SiO2 particle as a solid lubricant. J Ceram Soc Jpn 105(10):867–870, in Japanese

    Article  Google Scholar 

  18. Yanagihara K, Tani Y, Murakami Y (2003) Proposal of new solid lubrication technology employing nm silica particles. Trans Jpn Soc Mech Eng C69(688):3384–3389, in Japanese

    Article  Google Scholar 

  19. Tirosh J, Iddan D, Silviano M (1992) Hydrostatic ironing—analysis and experiments. J Manuf Sci Eng 114(2):237–243. doi:10.1115/1.2899777

    Article  Google Scholar 

  20. Shirazi A, Abrinia K, Faraji G (2015) Hydroironing: a novel ironing method with a higher thickness reduction. Mater Manuf Process 30(1):99–103. doi:10.1080/10426914.2014.962659

    Article  Google Scholar 

  21. Shirazi A, Abrinia K, Faraji G (2015) Analytical and experimental investigations on the novel hydro ironing process. Int J Adv Manuf Tech (In press) doi:10.1007/s00170-015-7535-y

  22. Khodsetan M, Faraji G, Abrinia K (2015) A novel ironing process with extra high thickness reduction: constrained ironing. Mater Manuf Process 30(11):1324–1328. doi:10.1080/10426914.2015.1037898

    Article  Google Scholar 

  23. Tan CJ, Abe Y, Daodon W, Takahashi N, Mori K, Purbolaksano J (2016) Increase in ironing limit of aluminium alloy cups with lubricants containing nanoparticles. J Mater Process Technol 229:804–813. doi:10.1016/j.jmatprotec.2015.10.032

    Article  Google Scholar 

  24. Zhuang X, Sun X, Xiang H, Xia M, Zhao Z (2015) Compound deep drawing and extrusion process for the manufacture of geared drum. Int J Adv Manuf Tech (In press) doi:10.1007/s00170-015-7840-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C.J., Aslian, A., Abe, Y. et al. Improved seizure resistance of ultra-high-strength steel ironed cups with a lubricant containing SiO2 nanoparticles. Int J Adv Manuf Technol 87, 1705–1711 (2016). https://doi.org/10.1007/s00170-016-8588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8588-2

Keywords

Navigation