Skip to main content

Advertisement

Log in

A review on recent developments in machining methods based on electrical discharge phenomena

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The process of electrical discharge machining (EDM) is one of the modern machining processes that machining stiff and high-strength parts such as ceramics and heat-treated steels, which traditional methods cannot be successful in their materials removal, is the most important applications of the this process. Deep drilling, machining inclined surfaces and small-scaled machining are the other applications of this process. Despite the unique applications of this method of machining, low materials removal rate (MRR), high surface roughness (SR), high tool wear rate (TWR), formation of recast layer on workpieces surfaces (that is location of defects and cracks) and environmental problems are the main problems and limitations of this process. This paper reviews the current research trends in EDM process containing dry EDM, near dry EDM, magnetic field assisted EDM, ultrasonic vibrations assisted EDM, and powder mixed EDM processes which were developed in order to overcome the limitations of EDM process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Wolf D, Cardon L, Balic J (2010) Parameter affecting quality of the electrical discharge machining process. Adv Prod Eng Manag 5(4):245–252

    Google Scholar 

  2. Bojorquez B, Marloth RT, Es-Said OS (2002) Formation of a crater in the workpiece on an electrical discharge machine. Eng Fail Anal 9:93–97

    Article  Google Scholar 

  3. Marafona J, Chousal JAG (2006) A finite element model of EDM based on the Joule effect. Int J Mach Tools Manuf 46:595–602

    Article  Google Scholar 

  4. Tabar Shervani MT, Amir A, Shabgard MR (2006) Numerical study on the dynamics of an electrical discharge generated bubble in EDM. Eng Anal Boundary Elem 30:503–514

    Article  MATH  Google Scholar 

  5. Srivastava V, Pandey PM (2012) Effect of process parameters on the performance of EDM process with ultrasonic assisted cryogenically cooled electrode. J Manuf Process 14:393–402

    Article  Google Scholar 

  6. Shabgard M, Ahmadi R, Seyedzavvar M, Oliaei SNB (2013) Mathematical and numerical modeling of the effect of input-parameters on the flushing efficiency of plasma channel in EDM process. Int J Mach Tools Manuf 65:79–87

    Article  Google Scholar 

  7. Shervani-Tabar MT, Rambarzin F, Mohammad Reza S, Reza P (2011) Numerical study on the dynamics of an electrical discharge generated vapor bubble in EDM with different shapes of the tool and the workpiece. Int J Adv Manuf Technol 56:151–159

    Article  Google Scholar 

  8. Kunieda M, Lauwers B, Rajurkar KP, Schumacher BM (2005) Advancing EDM through fundamental insight into the process. CIRP Ann Manuf Technol 54(2):64–87

    Article  Google Scholar 

  9. Joshi SN, Pande SS (2011) Intelligent process modeling and optimization of die-sinking electric discharge machining. Appl Soft Comput 11:2743–2755

    Article  Google Scholar 

  10. Aliakbari E, Baseri H (2012) Optimization of machining parameters in rotary EDM process by using the Taguchi method. Int J Adv Manuf Technol 62:1041–1053

    Article  Google Scholar 

  11. Shabgard M, Seyedzavvar M (2012) Correlation of input parameters with tool martial on the output parameters of electrical discharge machining process. Adv Mater Res 445:994–999

    Article  Google Scholar 

  12. Konig W, Dauw DF, Levy G, Panten U (1988) EDM—future steps towards the machining of ceramics. CIRP Ann 37(2):623–631

    Article  Google Scholar 

  13. Mohri N, Fukuzawa Y, Tani T, Saito N, Furutani K (1996) Assisting electrode method for machining insulating ceramics. CIRP Ann 45(1):201–204

    Article  Google Scholar 

  14. Mohri N, Fukuzawa Y, Tani T, Sata T (2002) Some considerations to machining characteristics of insulating ceramics—towards practical use in industry. CIRP Ann 51(1):161–164

    Article  Google Scholar 

  15. Matsuo T, Oshima E (1992) Investigation on the optimum carbide content and machining condition for wire EDM of zirconia ceramics. CIRP Ann 41(1):231–234

    Article  Google Scholar 

  16. Bayramoglu M, Duffill AW (1994) Systematic investigation on the use of cylindrical tools for the production of 3D complex shapes on CNC EDM machines. Int J Mach Tools Manuf 34(3):327–339

    Article  Google Scholar 

  17. Arthur A, Dickens PM, Cobb RC (1996) Using rapid prototyping to produce electrical discharge machining electrodes. Rapid Prototyp J 2(1):4–12

    Article  Google Scholar 

  18. Weng FT, Her MG (2002) Study of the batch production of micro parts using the EDM process. Int J Adv Manuf Technol 19(4):266–270

    Article  Google Scholar 

  19. Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43:1287–1300

    Article  Google Scholar 

  20. Rajurkar KP, Yu ZY (2000) 3D micro-EDM using CAD/CAM. CIRP Ann 49(1):127–130

    Article  Google Scholar 

  21. Masuzawa T (2000) State of the art of micromachining. CIRP Ann 49(2):473–488

    Article  Google Scholar 

  22. Yan BH, Wang CC, Liu WD, Huang FY (2000) Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode. Int J Adv Manuf Technol 16(5):322–333

    Article  Google Scholar 

  23. Mamalis AG, Vaxevanidis NM, Pantelis DI (1992) On the electrodischarge machining of ceramic plasma-sprayed steel plates. CIRP Ann 41(1):235–238

    Article  Google Scholar 

  24. Seyedzavvar M, Shabgard M (2012) Influence of tool material on the electrical discharge machining of AISI H13 tool steel. Adv Mater Res 445:988–993

    Article  Google Scholar 

  25. Shabgard MR, Seyedzavvar M, Nadimi S, Bavil O, Ivanov A (2011) A numerical method for predicting depth of heat affected zone in EDM process for AISI H13 tool steel. J Sci Ind Res 70:493–499

    Google Scholar 

  26. Jabbaripour B, Sadeghi MH, Faridvand SH, Shabgard MR (2012) Investigating the effects of EDM parameters on surface integrity, MRR and TWR in machining of Ti–6Al–4V. Mach Sci Technol 16:419–444

    Article  Google Scholar 

  27. Shabgard M, Oliaei SNB, Seyedzavvar M, Najadebrahimi A (2011) Experimental investigation and 3D finite element prediction of the white layer thickness, heat affected zone, and surface roughness in EDM process. J Mech Sci Technol 25(12):1–11

    Article  Google Scholar 

  28. Shabgard M, Seyedzavvar M, Oliaei SNB (2011) Influence of input parameters on the characteristics of the EDM process. J Mech Eng 57(9):689–696

    Article  Google Scholar 

  29. Wang D-A, Lin Y-C, Chow H-M, Fan S-F, Wang A-C (2012) Optimization of machining parameters using EDM in gas media based on Taguchi method. Adv Mater Res 459:170–175

    Google Scholar 

  30. Beşliu I, Schulze H-P, Coteaţă M, Amarandei D (2010) Study on the dry electrical discharge machining. Int J Mater Form 3(Suppl 1):1107–1110

    Article  Google Scholar 

  31. Govindan P, Joshi SS (2010) Experimental characterization of material removal in dry electrical discharge drilling. Int J Mach Tools Manuf 50:431–443

    Article  Google Scholar 

  32. Frohn-Villeneuve L, Curodeau A (2012) Dry die-sinking EDM with mouldable graphite–polymer electrode investigation of process parameters and pulse identification methods. Int J Adv Manuf Technol. doi:10.1007/s00170-012-4244-7

    Google Scholar 

  33. Shue K-Y, Tsai Y-Y, Chang Y-M (2010) An investigation of attachment on electrode surface in Dry EDM. Adv Mater Res 126–128:407–412

    Article  Google Scholar 

  34. Liqing L, Yingjie S (2013) Study of dry EDM with oxygen-mixed and cryogenic cooling approaches. Procedia CIRP 6:344–350

    Article  Google Scholar 

  35. Wang Y, Zhou X-j, De-jin H (2006) An experimental investigation of dry-electrical discharge assisted truing and dressing of metal bonded diamond wheel. Int J Mach Tools Manuf 46:333–342

    Article  Google Scholar 

  36. Zhang QH, Zhang JH, Deng JX, Qin Y, Niu ZW (2002) Ultrasonic vibration electrical discharge machining in gas. J Mater Process Technol 129:135–138

    Article  Google Scholar 

  37. Zhang QH, Zhang JH, Ren SF, Deng JX, Ai X (2004) Study on technology of ultrasonic vibration aided electrical discharge machining in gas. J Mater Process Technol 149:640–644

    Article  Google Scholar 

  38. Zhang QH, Dub R, Zhang JH, Zhang QB (2006) An investigation of ultrasonic-assisted electrical discharge machining in gas. Int J Mach Tools Manuf 46:1582–1588

    Article  Google Scholar 

  39. Xu MG, Zhang JH, Li Y, Zhang QH, Ren SF (2009) Material removal mechanisms of cemented carbides machined by ultrasonic vibration assisted EDM in gas medium. J Mater Process Technol 209:1742–1746

    Article  Google Scholar 

  40. Li LQ, Zhu GZ (2011) Investigate on micro-EDM in air (dry MEDM) by external blowing mode based on RC pulse generator. Adv Mater Res 317–319:334–340

    Google Scholar 

  41. Saleh T, Dahmardeh M, Bsoul A, Nojeh A, Takahata K (2011) Field-emission-assisted approach to dry micro-electro-discharge machining of carbon-nanotube forests. J Appl Phys 110:103305

    Article  Google Scholar 

  42. Yu ZB, Takahashi J, Kunieda M (2004) Dry electrical discharge machining of cemented carbide. J Mater Process Technol 149:353–357

    Article  Google Scholar 

  43. Wang T, Xie SQ, Xu XC (2010) Thermal field analysis of single pulse EDM in gas. Key Eng Mater 426–427:633–637

    Article  Google Scholar 

  44. Puthumana G, Joshi SS (2011) Investigations into performance of dry EDM using slotted electrodes. Int J Precis Eng Manuf 12(6):957–963

    Article  Google Scholar 

  45. Saha SK, Choudhury SK (2009) Experimental investigation and empirical modeling of the dry electric discharge machining process. Int J Mach Tools Manuf 49:297–308

    Article  Google Scholar 

  46. Lu Z, Lieen G, Ying Y, Juanjuan L (2012) A novel method of electrical discharge machining in gas gap state control. Adv Mater Res 430–432:1886–1889

    Article  Google Scholar 

  47. Li L, Wang Z, Guo Y, Bai J (2006) Experimental research on machining performance of electrode materials in dry EDM. Mater Sci Forum 532–533:173–176

    Article  Google Scholar 

  48. Tao J, Shih AJ, Ni J (2008) Experimental study of the dry and near-dry electrical discharge milling processes. J Manuf Sci Eng 130:011002–1

    Article  Google Scholar 

  49. Kunieda M, Yoshida M (1997) Electrical discharge machining in gas. CIRP Ann 46(1):143–146

    Article  Google Scholar 

  50. Y. Jia, B.S. Kim, D.J. Hu, J. Ni (2010) Experimental investigations into near-dry milling EDM of Stellite alloys. Int. J. Mach Mach Mater. 7(Nos. 1/2).

  51. Kao CC, Jia T, Shih AJ (2007) Near dry electrical discharge machining. Int J Mach Tools Manuf 47:2273–2281

    Article  Google Scholar 

  52. Kunieda M, Furuoya S (1991) Improvement of EDM efficiency by supplying oxygen gas into gap. CIRP Ann 40(1):215–218

    Article  Google Scholar 

  53. Jia Tao, Albert J. Shih, Jun Ni (2008) Near-dry EDM milling of mirror-like surface finish. Int J Electric Mach, No.13.

  54. S. Boopathi (2012) Experimental comparative study of near-dry wire-cut electrical discharge machining (WEDM). European Journal of Scientific Research No.4:472-481h, ISSN 1450-216X 75.

  55. Gao Qing, Zhang Qinhe, Zhang Jianhua, Hu Baolin (2010) Study on the powder mixed near dry EDM. Electro Mach Mould. 01.

  56. Xue B, Zhang QH, Li TT, Zhang JH (2012) Powder mixed near dry electrical discharge machining. Adv Mater Res 500:253–258

    Article  Google Scholar 

  57. Xue B, Zhang Q, Zhang J, Kong D, Yang T (2013) Machining efficiency of powder mixed near dry electrical discharge machining based on different material combinations of tool electrode and workpiece electrode. J Manuf Process 15:474–482

    Article  Google Scholar 

  58. Fujiki M, Kim G-Y, Ni J, Shih AJ (2011) Gap control for near-dry EDM milling with lead angle. Int J Mach Tools Manuf 51:77–83

    Article  Google Scholar 

  59. Masahiro F, Jun N, Shih AJ (2011) Tool path planning for near-dry EDM milling with lead angle on curved surfaces. J Manuf Sci Eng 133:051005–1

    Article  Google Scholar 

  60. Jia Y, Kim BS, Hu DJ, Ni J (2010) Parametric study on near-dry wire electro discharge machining of polycrystalline diamond-coated tungsten carbide material. Proc Inst Mech Eng B J Eng Manuf 224(2):185–193

    Article  Google Scholar 

  61. Fujiki M, Ni J, Shih AJ (2009) Investigation of the effects of electrode orientation and fluid flow rate in near-dry EDM milling. Int J Mach Tools Manuf 49:749–758

    Article  Google Scholar 

  62. Tanimura T, Isuzugawa K, Fujita I, Iwamoto A, Kamitani T (1989) Development of EDM in the mist. Proc ISEM 9:313–316

    Google Scholar 

  63. Lin Y-C, Lee H-S (2009) Optimization of machining parameters using magnetic-force-assisted EDM based on gray relational analysis. Int J Adv Manuf Technol 42:1052–1064

    Article  Google Scholar 

  64. R. Teimouri, H. Baseri (2012) Study of tool wear and overcut in EDM process with rotary tool and magnetic field. Adv Tribol. 2012:Article ID 895918, 8 p.

  65. Teimouri R, Baseri H (2012) Effects of magnetic field and rotary tool on EDM performance. J Manuf Process 14:316–322

    Article  Google Scholar 

  66. Zhao B, Xu X, Cai G, Kang R (2009) Experimental and mechanism research on EDM combined with magnetic field. Key Eng Mater 416:337–341

    Article  Google Scholar 

  67. Joshi S, Govindan P, Malshe A, Rajurkar K (2011) Experimental characterization of dry EDM performed in a pulsating magnetic field. CIRP Ann Manuf Technol 60:239–242

    Article  Google Scholar 

  68. Lin Y-C, Lee H-S (2008) Machining characteristics of magnetic force-assisted EDM. Int J Mach Tools Manuf 48:1179–1186

    Article  Google Scholar 

  69. Lin Y-C, Chen Y-F, Wang D-A, Lee H-S (2009) Optimization of machining parameters in magnetic force assisted EDM based on Taguchi method. J Mater Process Technol 209:3374–3383

    Article  Google Scholar 

  70. Teimouri R, Baseri H (2012) Experimental study of rotary magnetic field-assisted dry EDM with ultrasonic vibration of workpiece. Int J Adv Manuf Technol. doi:10.1007/s00170-012-4573-6

    Google Scholar 

  71. Cao MR, Di Geng X (2011) Process research on high-speed small hole drilling by EDM combined with magnetic field and water dispersant. Adv Mater Res 189–193:269–272

    Article  Google Scholar 

  72. Heinz K, Surla V, Kapoor SG, DeVor RE (2011) An investigation of magnetic-field-assisted material removal in micro EDM for nonmagnetic materials. J Manuf Sci Eng 133(2):021002, 9 pages

    Article  Google Scholar 

  73. S. H. Yeo, M. Murali, H. T. Cheah (2004) Magnetic field assisted micro electro-discharge machining. J Micromech Micro Eng. 14.

  74. Tomura S, Kunieda M (2009) Analysis of electromagnetic force in wire-EDM. Precis Eng 33:255–262

    Article  Google Scholar 

  75. Khairy AB (2001) Aspects of surface and edge finish by magnetoabrasive particles. J Mater Process Technol 116:77–83

    Article  Google Scholar 

  76. Chang GW, Yan BH, Hsu RT (2002) Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives. Int J Mach Tools Manuf 42:575–583

    Article  Google Scholar 

  77. Singh S, Shan HS (2002) Development of magneto abrasive flow machining process. Int J Mach Tools Manuf 42:953–959

    Article  Google Scholar 

  78. Mori T, Hirota K, Kawashima Y (2003) Clarification of magnetic abrasive finishing mechanism. J Mater Process Technol 143–144:682–686

    Article  Google Scholar 

  79. Yamaguchi H, Shinmura T (2004) Internal finishing process for alumina ceramic components by a magnetic field-assisted finishing process. Precis Eng 28:135–142

    Article  Google Scholar 

  80. Kim JD (2003) Polishing of ultra-clean inner surfaces using magnetic force. Int J Adv Manuf Technol 21:91–97

    Google Scholar 

  81. Yin S, Shinmura T (2004) A comparative study: polishing characteristics and its mechanisms of three vibration models in vibration-assisted magnetic abrasive polishing. Int J Mach Tools Manuf 44:383–390

    Article  Google Scholar 

  82. Yan BH, Chang GW, Chang JH, Hsu RT (2004) Improving electrical discharge machined surfaces using magnetic abrasive finishing. Mach Sci Technol 8(1):103–118

    Article  Google Scholar 

  83. Wang Y, Hu D (2005) Study on the inner surface finishing of tubing by magnetic abrasive finishing. Int J Mach Tools Manuf 45:43–49

    Article  Google Scholar 

  84. Jayswal SC, Jain VK, Dixit PM (2005) Modeling and simulation of magnetic abrasive finishing process. Int J Adv Manuf Technol 26:477–490

    Article  Google Scholar 

  85. Singh DK, Jain VK, Raghuram V (2006) Experimental investigations into forces acting during a magnetic abrasive finishing process. Int J Adv Manuf Technol 30:652–662

    Article  Google Scholar 

  86. De Bruijn HE, Delft TH, Pekelharing AJ (1978) Effect of a magnetic field on the gap cleaning in EDM. CIRP Ann 27:93–95

    Google Scholar 

  87. Amir A, Shabgard MR, Ivanov A, Shervanyi-Tabar MT (2008) Effect of ultrasonic-assisted EDM on the surface integrity of cemented tungsten carbide (WC-Co). Int J Adv Manuf Technol. doi:10.1007/s00170-008-1476-7

    Google Scholar 

  88. Mohammad Reza S, Babak S, Keivan A, Hamid P (2011) Comparative study and mathematical modeling of machining parameters in ultrasonic-assisted EDM of AISI H13 tool steel by the application of workpiece vibration. Adv Mater Res 154–155:604–1613

    Google Scholar 

  89. Mohammadreza S, Hamed K, Mirsadegh S, Ramin Mohammadpour S (2011) Ultrasonic assisted EDM: effect of the workpiece vibration in the machining characteristics of FW4 welded metal. Front Mech Eng 6(4):419–428

    Google Scholar 

  90. Abdullah A, Shabgard MR (2008) Effect of ultrasonic vibration of tool on electrical discharge machining of cemented tungsten carbide (WC-Co). Int J Adv Manuf Technol 38:1137–1147

    Article  Google Scholar 

  91. Ichikawa T, Natsu W (2013) Realization of micro-EDM under ultra-small discharge energy by applying ultrasonic vibration to machining fluid. Procedia CIRP 6:326–331

    Article  Google Scholar 

  92. Kremer D, Lebrun JL, Hosari B (1989) Effects of ultrasonic vibrations on the performances in EDM. CIRP Ann 38(1):199–202

    Article  Google Scholar 

  93. Shervani-Tabar MT, Sahbgard MR (2011) Numerical study on the effect of the frequency and amplitude of the tool on the material removal rate in ultrasonic assisted electrical discharge machining. Proc IMechE BJ Eng Manuf 225:408–413

    Google Scholar 

  94. Shervani-Tabar MT, Amir A, Shabgard MR (2007) Numerical and experimental study on the effect of vibration of the tool in ultrasonic assisted EDM. Int J Adv Manuf Technol 32:719–731

    Article  Google Scholar 

  95. Shervani-Tabar MT, Mobadersany N (2013) Numerical study of the dielectric liquid around an electrical discharge generated vapor bubble in ultrasonic assisted EDM. Ultrasonics 53:943–955

    Article  Google Scholar 

  96. Shervani-Tabar MT, Maghsoudi K, Shabgard MR (2013) Effects of simultaneous ultrasonic vibration of the tool and the workpiece in ultrasonic assisted EDM. Int J Comput Methods Eng Sci Mech 14:1–9

    Article  Google Scholar 

  97. Shervani-Tabar MT, Seyed-Sadjadi MH, Shabgard MR (2013) Numerical study on the splitting of a vapor bubble in the ultrasonic assisted EDM process with the curved tool and workpiece. Ultrasonics 53:203–210

    Article  Google Scholar 

  98. Gao C, Liu Z (2003) A study of ultrasonically aided micro electrical discharge machining by the application of workpiece vibration. J Mater Process Technol 139:226–228

    Article  Google Scholar 

  99. Chern GL, Wu YJE, Liu S-F (2006) Development of a micro punching machine and study on the influence of vibration machining in micro EDM. J Mater Process Technol 180:102–109

    Article  Google Scholar 

  100. Egashira K, Matsugasako A, Tsuchiya H, Miyazaki M (2006) Electrical discharge machining with ultralow discharge energy. Precis Eng 30:414–420

    Article  Google Scholar 

  101. Tong H, Li Y, Yang W (2008) Experimental research on vibration assisted EDM of micro-structures with non-circular cross-section. J Mater Process Technol 208:289–298

    Article  Google Scholar 

  102. Liew PJ, Yan J, Kuriyagawa T (2014) Fabrication of deep micro-holes in reaction-bonded SiC by ultrasonic cavitation assisted micro-EDM. Int J Mach Tool Manuf 76:13–20

    Article  Google Scholar 

  103. Wansheng Z, Wang Z, Shichun D, Guanxin C, Hongyu W (2002) Ultrasonic and electric discharge machining to deep and small hole on titanium alloy. J Mater Process Technol 120:101–106

    Article  Google Scholar 

  104. Chern G-L, Chuang Y (2006) Study on vibration-EDM and mass punching of micro-holes. J Mater Process Technol 180:151–160

    Article  Google Scholar 

  105. Prihandana GS, Muslim M, Hamdi M, Wong YS, Mitsui K (2009) Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM processes—Taguchi approach. Int J Mach Tools Manuf 49:1035–1041

    Article  Google Scholar 

  106. Yan BH, Wang AC, Huang CY, Huang FY (2002) Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining. Int J Mach Tools Manuf 42:1105–1112

    Article  Google Scholar 

  107. Thoea TB, Aspinwall DK, Killey N (1999) Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy. J Mater Process Technol 92–93:323–328

    Article  Google Scholar 

  108. Lin YC, Yan BH, Chang YS (2000) Machining characteristics of titanium alloy (Ti-6Al-4V) using a combination process of EDM with USM. J Mater Process Technol 104:171–177

    Article  Google Scholar 

  109. Lin YC, Yan BH, Huang FY (2001) Surface modification of Al-Zn-Mg aluminum alloy using the combined process of EDM with USM. J Mater Process Technol 115:359–366

    Article  Google Scholar 

  110. Zhang JH, Zhang H, Su DS, Qin Y, Hou MY, Zhang QH, Wang L (2002) Adaptive fuzzy control system of a servomechanism for electro-discharge machining combined with ultrasonic vibrations. J Mater Process Technol 129:45–49

    Article  Google Scholar 

  111. Shabgard MR, Badamchizadeh MA, Ranjbary G, Amini K (2013) Fuzzy approach to select machining parameters in electrical discharge machining (EDM) and ultrasonic-assisted EDM processes. J Manuf Syst 32:32–39

    Article  Google Scholar 

  112. Deng J, Lee T (2000) Surface integrity in electro-discharge machining, ultrasonic machining, and diamond saw cutting of ceramic composites. Ceram Int 26:825–830

    Article  Google Scholar 

  113. Murthy VSR, Philip PK (1987) Pulse train analysis in ultrasonic assisted EDM. Int J Mach Tools Manuf 27(4):469–477

    Article  Google Scholar 

  114. Kansal HK, Sehijpal S, Pradeep K (2007) Technology and research developments in powder mixed electric discharge machining. J Mater Process Technol 184:32–41, PMEDM

    Article  Google Scholar 

  115. Mohri N, Saito N, Higashi M (1991) A new process of finish machining on free surface by EDM methods. CIRP Ann 40(1):207–210

    Article  Google Scholar 

  116. Pecas P, Henriques E (2008) Electrical discharge machining using simple and powder-mixed dielectric: the effect of the electrode area in the surface roughness and topography. J Mater Process Technol 200:250–258

    Article  Google Scholar 

  117. Pecas P, Henriques E (2003) Influence of silicon powder-mixed dielectric on conventional electrical discharge machining. Int J Mach Tools Manuf 43:1465–1471

    Article  Google Scholar 

  118. Hu FQ, Cao FY, Song BY, Hou PJ, Zhang Y, Chen K, Wei JQ (2013) Surface properties of SiCp/Al composite by powder-mixed EDM. Procedia CIRP 6:101–106

    Article  Google Scholar 

  119. Wong YS, Lim LC, Iqbal R, Tee WM (1998) Near-mirror-finish phenomenon in EDM using powder-mixed dielectric. J Mater Process Technol 79:30–40

    Article  Google Scholar 

  120. Tzeng Y-F, Lee C-Y (2001) Effects of powder characteristics on electro-discharge machining efficiency. Int J Adv Manuf Technol 17:586–592

    Article  Google Scholar 

  121. Ming QY, He LY (1995) Powder-suspension dielectric fluid for EDM. J Mater Process Technol 52(44):54

    Google Scholar 

  122. Jabbaripour B, Sadeghi MH, Shabgard MR, Faraji H (2013) Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of γ-TiAl intermetallic. J Manuf Process 15:56–68

    Article  Google Scholar 

  123. Jabbaripour B, Sadeghi MH, Shabgard MR, Shajari S, Hassanpour H (2012) Investigating the effects of powder mixed electrical discharge machining on the surface quality of γ–TiAl intermetallic. Adv Mater Res 488–489:396–401

    Article  Google Scholar 

  124. Yih-fong T, Fu-chen C (2005) Investigation into some surface characteristics of electrical discharge machined SKD-11 using powder-suspension dielectric oil. J Mater Process Technol 170:385–391

    Article  Google Scholar 

  125. Wu KL, Yan BH, Huang FY, Chen SC (2005) Improvement of surface finish on SKD steel using electro-discharge machining with aluminum and surfactant added dielectric. Int J Mach Tools Manuf 45:1195–1201

    Article  Google Scholar 

  126. Zhao WS, Meng QG, Wang ZL (2002) The application of research on powder mixed EDM in rough machining. J Mater Process Technol 129:30–33

    Article  Google Scholar 

  127. Sung-Long C, Ming-Hong M, Kuo-Hsing H, Chia-Ching W (2014) Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent. Appl Surf Sci. doi:10.1016/j.apsusc.2014.04.204

    Google Scholar 

  128. Kumara S, Batra U (2012) Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric. J Manuf Process 14:35–40

    Article  Google Scholar 

  129. Janmanee P, Muttamara A (2012) Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension. Appl Surf Sci 258:7255–7265

    Article  Google Scholar 

  130. Furutani K, Saneto A, Takezawa H, Mohri N, Miyake H (2001) Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid. J Int Soc Precis Eng Nanotechnol 25:138–144

    Article  Google Scholar 

  131. Kansal HK, Sehijpal S, Kumar P (2005) Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J Mater Process Technol 169:427–436

    Article  Google Scholar 

  132. Kansal HK, Singh S, Kumar P (2008) Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Math Comput Model 47:1217–1237

    Article  MATH  Google Scholar 

  133. Klocke F, Lung D, Antonoglou G, Thomaidis D (2004) The effects of powder suspended dielectrics on the thermal influenced zone by electrodischarge machining with small discharge energies. J Mater Process Technol 149:191–197

    Article  Google Scholar 

  134. Chow H-M, Yan B-H, Huang F-Y, Hung J-C (2000) Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining. J Mater Process Technol 101:95–103

    Article  Google Scholar 

  135. Han-Ming C, Lieh-Dai Y, Ching-Tien L, Yuan-Feng C (2008) The use of SiC powder in water as dielectric for micro-slit EDM machining. J Mater Process Technol 195:160–170

    Article  Google Scholar 

  136. Shabgard MR, Najafabadi AF (2014) The influence of dielectric media on nano-structured tungsten carbide (WC) powder synthesized by electro-discharge process. Adv Powder Technol 25:937–945

    Article  Google Scholar 

  137. Han M-S, Min B-K, Lee SJ (2007) Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte. J Mater Process Technol 191:224–227

    Article  Google Scholar 

  138. Jeswani ML (1981) Effect of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining. Wear 70:133–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Shabgard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabgard, M.R., Gholipoor, A. & Baseri, H. A review on recent developments in machining methods based on electrical discharge phenomena. Int J Adv Manuf Technol 87, 2081–2097 (2016). https://doi.org/10.1007/s00170-016-8554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8554-z

Keywords

Navigation