The influence of the growth cavity on damage of welded steel

ORIGINAL ARTICLE

Abstract

The aim of our work is the modeling of damage in the welded metal using the finite element method and the concepts of fracture mechanics based on local approaches. The use of Gurson-Tvergaard-Needleman (GTN) model has enabled us to model the behavior of damage of welded steel, which is described as being due to the growth of cavities.

Keywords

Growth of cavities Volume deformation Damage GTN Weld Steel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Puttick DE (1959) Philos Mag 4:964–969CrossRefGoogle Scholar
  2. 2.
    Rogers HC (1960) Trans AIME 218:498–506Google Scholar
  3. 3.
    Brown LM, Embury JD (1973) Proc. 3rd International conference on strength of metals and alloys. Institute of metals, Cambridge, pp 164–169Google Scholar
  4. 4.
    Rice JR, Tracey DM (1969) Journal of the mechanics and physics of solids. Phys Solids 17:201–217CrossRefGoogle Scholar
  5. 5.
    McClintock FA (1968) J Appl Mech 35:363–375CrossRefGoogle Scholar
  6. 6.
    Hancock JW, Mackenzie AC (1976) J Mech Phys Solids 24:147–160CrossRefGoogle Scholar
  7. 7.
    Hancock JW, Brown DK (1983) J Mech Phys Solids 31:1–24CrossRefGoogle Scholar
  8. 8.
    Budiansky B, Hutchinson JW, Slutsky S (1982) Void growth and collapse in viscous solids. In: Hopkins HG, Sewell MJ (eds) Mechanics of solids. The Rodney Hill 60th anniversary volume, Pergamon, pp 13–45CrossRefGoogle Scholar
  9. 9.
    Gurson AL (1977) J Eng Mater Technol 99:2–15CrossRefGoogle Scholar
  10. 10.
    Gurson AL (1977) In: Taplin DMR (ed) Fracture 1977, international conference of fracture, 2A, pp. 357-364Google Scholar
  11. 11.
    A Needleman, JR Rice (1978) In: DP Koistinen et al. (ed) Mechanics of sheet metal forming, Plenum, pp. 237- 267Google Scholar
  12. 12.
    Tvergaard V (1982) Int J Solids Struct 18:659–672CrossRefGoogle Scholar
  13. 13.
    Tvergaard V, Needleman A (1984) Acta Metall 32:157–169CrossRefGoogle Scholar
  14. 14.
    Perrin G, Leblond JB (1990) Analytical study of a hollow sphere made of plastic porous material and subjected to hydrostatic tension. Int J Plast 6:677–699CrossRefGoogle Scholar
  15. 15.
    Wisilius, Imad (2000) Fatigue & fracture of engineering materials & structures. 1460-2695Google Scholar
  16. 16.
    Bridgman PW (1944) Trans ASME 32:553–574Google Scholar
  17. 17.
    Nadai A (1950) Theory of flow and fracture of solids’. Mc Graw-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.University of Djillali LiabesSidi Bel AbbesAlgeria

Personalised recommendations