Skip to main content
Log in

Optimization of welding process parameters by combining Kriging surrogate with particle swarm optimization algorithm

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Laser brazing (LB) provides a promising way to join the galvanized steels in automotive industry. The process parameters of LB have significant effects on the bead profile and hence the quality of joint. Since the relationships between the process parameters and bead profiles cannot be expressed explicitly, it is impractical to determine the optimal process parameters intuitively. This paper proposes an optimization methodology by combining Kriging surrogate and particle swarm optimization (PSO) to address the process parameters optimization of the bead profiles in LB with crimping butt of 0.8-mm-thick galvanized steel. Firstly, an experiment using Taguchi L 25 orthogonal array is conducted where welding speed (WS), wire speed rate (WF), and gap (GAP) are taken into consideration as the input parameters, while the bead profiles are the output responses. Secondly, the relationships between the inputs and outputs are established using the Kriging model. Thirdly, the effects of the input parameters on the bead profiles are analyzed, and the global process parameters are obtained by the presented Kriging-PSO approach. At last, the verification experiments were conducted to verify the effectiveness of the optimal values. On the whole, the proposed hybrid method, Kriging-PSO, shows great promise for improving the effectiveness and stability of LB welding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y, Gao X (2013) Analysis of characteristics of molten pool using cast shadow during high-power disk laser welding. Int J Adv Manuf Technol 70(9-12):1979–1988. doi:10.1007/s00170-013-5442-7

    Article  Google Scholar 

  2. Chen H-C, Pinkerton AJ, Li L, Liu Z, Mistry AT (2011) Gap-free fibre laser welding of Zn-coated steel on Al alloy for light-weight automotive applications. Mater Des 32(2):495–504. doi:10.1016/j.matdes.2010.08.034

  3. Qin G, Lei Z, Su Y, Fu B, Meng X, Lin S (2014) Large spot laser assisted GMA brazing–fusion welding of aluminum alloy to galvanized steel. J Mater Process Technol 214(11):2684–2692. doi:10.1016/j.jmatprotec.2014.06.011

  4. Colombo D, Previtali B (2014) Laser dimpling and remote welding of zinc-coated steels for automotive applications. Int J Adv Manuf Technol 72(5-8):653–663. doi:10.1007/s00170-014-5690-1

    Article  Google Scholar 

  5. Quintino L, Pimenta G, Iordachescu D, Miranda RM, Pepe NV (2006) MIG brazing of galvanized thin sheet joints for automotive industry. Mater Manuf Process 21(1):63–73. doi:10.1081/Amp-200060621

    Article  Google Scholar 

  6. Zhao Y, Zhang Y, Hu W, Lai X (2012) Optimization of laser welding thin-gage galvanized steel via response surface methodology. Opt Lasers Eng 50(9):1267–1273. doi:10.1016/j.optlaseng.2012.03.010

    Article  Google Scholar 

  7. Shah LH, Ishak M (2014) Review of research progress on aluminum-steel dissimilar welding. Mater Manuf Process 29(8):928–933, doi:10.1080/10426914.2014.880461

  8. Cao X, Wallace W, Poon C, Immarigeon JP (2003) Research and progress in laser welding of wrought aluminum alloys. I Laser welding processes. Mater Manuf Processes 18(1):1–22. doi:10.1081/Amp-120017586

    Article  Google Scholar 

  9. Chen W, Ackerson P, Molian P (2009) CO2 laser welding of galvanized steel sheets using vent holes. Mater Des 30(2):245–251. doi:10.1016/j.matdes.2008.05.009

    Article  Google Scholar 

  10. Iqbal S, Gualini MMS, Rehman A (2010) Dual beam method for laser welding of galvanized steel: experimentation and prospects. Opt Laser Technol 42(1):93–98. doi:10.1016/j.optlastec.2009.05.009

    Article  Google Scholar 

  11. Qin GL, Su YH, Meng XM, Fu BL (2015) Numerical simulation on MIG arc brazing-fusion welding of aluminum alloy to galvanized steel plate. Int J Adv Manuf Tech 78(9-12):1917–1925. doi:10.1007/s00170-014-6529-5

    Article  Google Scholar 

  12. Rong YM, Zhang Z, Zhang GJ, Yue C, Gu YF, Huang Y, Wang CM, Shao XY (2015) Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA. Opt Lasers Eng 67:94–104. doi:10.1016/j.optlaseng.2014.10.009

    Article  Google Scholar 

  13. Ma K, Yu ZS, Zhang PL, Lu YL, Yan H, Li CG, Liu XP (2015) Influence of wire feeding speed on laser brazing zinc-coated steel with Cu-based filler metal. Int J Adv Manuf Tech 76(5-8):1333–1342. doi:10.1007/s00170-014-6347-9

    Article  Google Scholar 

  14. Joo S-M, Bang H-S, Kwak S-Y (2014) Optimization of hybrid CO2 laser-GMA welding parameters on dissimilar materials AH32/STS304L using grey-based Taguchi analysis. Int J Precis Eng Manuf 15(3):447–454. doi:10.1007/s12541-014-0356-3

    Article  Google Scholar 

  15. Singh A, Cooper DE, Blundell NJ, Pratihar DK, Gibbons GJ (2013) Modelling of weld-bead geometry and hardness profile in laser welding of plain carbon steel using neural networks and genetic algorithms. Int J Comput Integr Manuf 27(7):656–674. doi:10.1080/0951192x.2013.834469

    Article  Google Scholar 

  16. Benyounis KY, Olabi AG, Hashmi MSJ (2005) Optimizing the laser-welded butt joints of medium carbon steel using RSM. J Mater Process Technol 164–165:986–989. doi:10.1016/j.jmatprotec.2005.02.067

    Article  Google Scholar 

  17. Ruggiero A, Tricarico L, Olabi AG, Benyounis KY (2011) Weld-bead profile and costs optimisation of the CO2 dissimilar laser welding process of low carbon steel and austenitic steel AISI316. Opt Laser Technol 43(1):82–90. doi:10.1016/j.optlastec.2010.05.008

    Article  Google Scholar 

  18. Katherasan D, Elias JV, Sathiya P, Haq AN (2012) Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. J Intell Manuf 25(1):67–76. doi:10.1007/s10845-012-0675-0

    Article  Google Scholar 

  19. Acar E (2015) Effect of error metrics on optimum weight factor selection for ensemble of metamodels. Expert Syst Appl 42(5):2703–2709. doi:10.1016/j.eswa.2014.11.020

    Article  MathSciNet  Google Scholar 

  20. Vafeiadis T, Diamantaras KI, Sarigiannidis G, Chatzisavvas KC (2015) A comparison of machine learning techniques for customer churn prediction. Simul Model Pract Th 55:1–9. doi:10.1016/j.simpat.2015.03.003

    Article  Google Scholar 

  21. Jiang P, Wang JZ, Zhou Q, Zhang XL (2015) An Enhanced Analytical Target Cascading and Kriging Model Combined Approach for Multidisciplinary Design Optimization. Math Probl Eng. doi:10.1155/2015/685958

  22. Li X, Lawson S, Zhou Y, Goodwin F (2007) Novel technique for laser lap welding of zinc coated sheet steels. J Laser Appl 19(4):259. doi:10.2351/1.2795755

    Article  Google Scholar 

  23. Zhang HT, Feng JC, He P, Hackl H (2007) Interfacial microstructure and mechanical properties of aluminium–zinc-coated steel joints made by a modified metal inert gas welding–brazing process. Mater Charact 58(7):588–592. doi:10.1016/j.matchar.2006.07.008

    Article  Google Scholar 

  24. Schmidt M, Otto A, Kägeler C (2008) Analysis of YAG laser lap-welding of zinc coated steel sheets. CIRP Ann Manuf Technol 57(1):213–216. doi:10.1016/j.cirp.2008.03.043

    Article  Google Scholar 

  25. Zadeh PM, Toropov VV, Wood AS (2009) Metamodel-based collaborative optimization framework. Struct Multidiscip O 38(2):103–115. doi:10.1007/s00158-008-0286-8

    Article  Google Scholar 

  26. Cui L, He DY, Guo F, Li XY, Jiang JM (2010) Effect of fiber laser-MIG hybrid process parameters on weld bead shape and tensile properties of commercially pure titanium. Mater Manuf Process 25(11):1309–1316. doi:10.1080/10426914.2010.512648

    Article  Google Scholar 

  27. Li CB, Chen MH, Yuan ST, Liu LM (2012) Effect of welding speed in high speed laser-TIG welding of magnesium alloy. Mater Manuf Process 27(12):1424–1428. doi:10.1080/10426914.2012.700144

    Article  Google Scholar 

  28. Cao R, Yu G, Chen JH, Wang P-C (2013) Cold metal transfer joining aluminum alloys-to-galvanized mild steel. J Mater Process Technol 213(10):1753–1763. doi:10.1016/j.jmatprotec.2013.04.004

    Article  Google Scholar 

  29. Li LQ, Tan CW, Chen YB, Guo W, Mei CX (2013) CO2 laser welding-brazing characteristics of dissimilar metals AZ31B Mg alloy to Zn coated dual phase steel with Mg based filler. J Mater Process Technol 213(3):361–375. doi:10.1016/j.jmatprotec.2012.10.009

    Article  Google Scholar 

  30. Lin J, Ma N, Lei Y, Murakawa H (2013) Shear strength of CMT brazed lap joints between aluminum and zinc-coated steel. J Mater Process Technol 213(8):1303–1310. doi:10.1016/j.jmatprotec.2013.02.011

    Article  Google Scholar 

  31. Tan CW, Li LQ, Chen YB, Mei CX, Guo W (2013) Interfacial microstructure and fracture behavior of laser welded-brazed Mg alloys to Zn-coated steel. Int J Adv Manuf Tech 68(5-8):1179–1188. doi:10.1007/s00170-013-4910-4

    Article  Google Scholar 

  32. Taguchi G (1978) Performance analysis design. Int J Prod Res 16(6):521–530

    Article  Google Scholar 

  33. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 409–423

  34. Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. Ieee C Evol Computat: 84–88. doi:10.1109/CEC.2000.870279

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P., Cao, L., Zhou, Q. et al. Optimization of welding process parameters by combining Kriging surrogate with particle swarm optimization algorithm. Int J Adv Manuf Technol 86, 2473–2483 (2016). https://doi.org/10.1007/s00170-016-8382-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8382-1

Keywords

Navigation