Abstract
The production process of fiber-reinforced plastic parts must be controlled through sophisticated instruments to warrant high quality standards. The cure degree of matrix, which is representative of the product quality, is in general evaluated by an indirect method, measuring the temperature inside the laminate, or by a direct method, evaluating the dielectric behavior of matrix. The aim of this work was to value the possibility to measure the cure degree of laminates by dielectric coplanar plates substituting a traditional parallel plate sensor that are sensitive to laminate compaction during cure. FEM simulations were executed to develop the sensor, and then some experimental tests were carried out to verify the suitability of the designed sensor to measure the degree of cure in a laminate. The cure degree trend evaluated through the developed sensor was compared with that one noticed through a cure process simulation and with that one measured by a parallel plate sensor.
Similar content being viewed by others
References
Bellini C, Polini W, Sorrentino L (2014) A new class of thin composite parts for small batch productions. Adv Compos Lett 23(5):111–116
Sorrentino L, Bellini C (2015) Compaction influence on spring-in of thin composite parts: experimental and numerical results. J Compos Mater 49(17):2149–2158. doi:10.1177/0021998314542362
Ersoy N, Garstka T, Potter K, Wisnom MR, Porter D, Clegg M, Stringer G (2010) Development of the properties of a carbon fibre reinforced thermosetting composite through cure. Compos A: Appl Sci Manuf 41(3):401–409. doi:10.1016/j.compositesa.2009.11.007
Koziol M (2012) Experimental study on the effect of stitch arrangement on mechanical performance of GFRP laminates manufactured on a basis of stitched preforms. J Compos Mater 46(9):1067–1078. doi:10.1177/0021998311414947
Antonucci V, Giordano M, Hsiao K-T, Advani SG (2002) A methodology to reduce thermal gradients due to the exothermic reactions in composites processing. Int J Heat Mass Transf 45(8):1675–1684. doi:10.1016/S0017-9310(01)00266-6
Ruiz E, Trochu F (2006) Multi-criteria thermal optimization in liquid composite molding to reduce processing stresses and cycle time. Compos A: Appl Sci Manuf 37(6):913–924. doi:10.1016/j.compositesa.2005.06.010
Ručigaj A, Alič B, Krajnc M, Šebenik U (2015) Curing of bisphenol A-aniline based benzoxazine using phenolic, amino and mercapto accelerators. Express Polymer Letters 9(7):647–657. doi:10.3144/expresspolymlett.2015.60
Kim D, Centea T, Nutt SR (2014) In-situ cure monitoring of an out-of-autoclave prepreg: effects of out-time on viscosity, gelation and vitrification. Compos Sci Technol 102:132–138. doi:10.1016/j.compscitech.2014.07.027
Kim D, Centea T, Nutt SR (2014) Out-time effects on cure kinetics and viscosity for an out-of-autoclave (OOA) prepreg: modelling and monitoring. Compos Sci Technol 100:63–69. doi:10.1016/j.compscitech.2014.05.027
Laurent-Mounier A, Binétruy C, Krawczak P (2005) Multipurpose carbon fiber sensor design for analysis and monitoring of the resin transfer molding of polymer composites. Polym Compos 26(5):717–730. doi:10.1002/pc.20104
Konstantopoulos S, Fauster E, Schledjewski R (2014) Monitoring the production of FRP composites: a review of in-line sensing methods. Express Polym Lett 8(11):823–840. doi:10.3144/expresspolymlett.2014.84
Bang KG, Kwon JW, Lee DG, Lee JW (2001) Measurement of the degree of cure of glass fiber–epoxy composites using dielectrometry. J Mater Process Technol 113(1–3):209–214. doi:10.1016/S0924-0136(01)00657-4
Carlone P, Palazzo GS (2012) Flow monitoring and permeability measurements in LCM processes by the means of a dielectric sensor. Key Eng Mater 504–506:289–294. doi:10.4028/www.scientific.net/KEM.504-506.289
Carlone P, Palazzo GS (2014) Unsaturated and saturated flow front tracking in liquid composite molding processes using dielectric sensors. Appl Compos Mater. doi:10.1007/s10443-014-9422-3
Endres HE, Drost S (1991) Optimization of the geometry of gas-sensitive interdigital capacitors. Sensors Actuators B Chem 4(1–2):95–98. doi:10.1016/0925-4005(91)80182-J
Zaretsky MC, Mouayad L, Melcher JR (1988) Continuum properties from interdigital electrode dielectrometry. IEEE Trans Electr Insul 23(6):897–917. doi:10.1109/14.16515
Sheppard NF Jr, Tucker RC, Wu C (1993) Electrical conductivity measurements using microfabricated interdigitated electrodes. Anal Chem 65(9):1199–1202
Lin J, Möller S, Obermeier E (1991) Two-dimensional and three-dimensional interdigital capacitors as basic elements for chemical sensors. Sensors Actuators B Chem 5(1–4):223–226. doi:10.1016/0925-4005(91)80251-E
Skordos AA, Partridge IK (2007) Effects of tool-embedded dielectric sensors on heat transfer phenomena during composite cure. Polym Compos 28(2):139–152. doi:10.1002/pc.20277
Sorrentino L, Bellini C, Capriglione D, Ferrigno L (2015) Local monitoring of polymerization trend by an interdigital dielectric sensor. Int J Adv Manuf Technol 79(5):1007–1016. doi:10.1007/s00170-015-6892-x
Kim JS, Lee DG (1996) Analysis of dielectric sensors for the cure monitoring of resin matrix composite materials. Sensors Actuators B Chem 30(2):159–164. doi:10.1016/0925-4005(95)01761-J
ASTM (2013) D2149. Standard Test Method for Permittivity (Dielectric Constant) And Dissipation Factor Of Solid Ceramic Dielectrics At Frequencies To 10 MHz And Temperatures To 500°C. ASTM International, West Conshohocken, PA. doi:10.1520/D2149
Park HC, Goo NS, Min KJ, Yoon KJ (2003) Three-dimensional cure simulation of composite structures by the finite element method. Compos Struct 62(1):51–57
Lin Liu X, Crouch IG, Lam YC (2000) Simulation of heat transfer and cure in pultrusion with a general-purpose finite element package. Compos Sci Technol 60(6):857–864. doi:10.1016/S0266-3538(99)00189-X
Carlone P, Palazzo GS (2009) Thermo-chemical and rheological finite element analysis of the cure process of thick carbon-epoxy composite laminates. Int J Mater Form 2 (SUPPL. 1):137–140. doi:10.1007/s12289-009-0450-8
Carlone P, Baran I, Hattel JH (2013) Palazzo GS (2013) computational approaches for modeling the multiphysics in pultrusion process. Adv Mech Eng. doi:10.1155/2013/301875
Joshi SC, Lam YC (2006) Integrated approach for modelling cure and crystallization kinetics of different polymers in 3D pultrusion simulation. J Mater Process Technol 174(1–3):178–182. doi:10.1016/j.jmatprotec.2006.01.003
Teplinsky S, Gutman EM (1996) Computer simulation of process induced stress and strain development during cure of thick-section thermosetting composites. Comput Mater Sci 6(1):71–76. doi:10.1016/0927-0256(96)00035-3
ASTM (2013) E2070. Standard Test Method for Kinetic Parameters by Differential Scanning Calorimetry Using Isothermal Methods. ASTM International, West Conshohocken, PA. doi:10.1520/E2070
Sorrentino L, Tersigni L (2012) A method for cure process design of thick composite components manufactured by closed die technology. Appl Compos Mater 19(1):31–45. doi:10.1007/s10443-010-9179-2
Sorrentino L, Polini W, Bellini C (2014) To design the cure process of thick composite parts: experimental and numerical results. Adv Compos Mater 23(3):225–238. doi:10.1080/09243046.2013.847780
Sorrentino L, Bellini C (2015) Validation of a methodology for cure process optimization of thick composite laminates. Polym-Plast Technol Eng 54(17):1803–1811. doi:10.1080/03602559.2015.1050513
Kim HS, Lee DG (2007) Reduction of fabricational thermal residual stress of the hybrid co-cured structure using a dielectrometry. Compos Sci Technol 67(1):29–44. doi:10.1016/j.compscitech.2006.05.002
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sorrentino, L., Bellini, C. In-process monitoring of cure degree by coplanar plate sensors. Int J Adv Manuf Technol 86, 2851–2859 (2016). https://doi.org/10.1007/s00170-016-8338-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00170-016-8338-5