Skip to main content
Log in

In-process monitoring of cure degree by coplanar plate sensors

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The production process of fiber-reinforced plastic parts must be controlled through sophisticated instruments to warrant high quality standards. The cure degree of matrix, which is representative of the product quality, is in general evaluated by an indirect method, measuring the temperature inside the laminate, or by a direct method, evaluating the dielectric behavior of matrix. The aim of this work was to value the possibility to measure the cure degree of laminates by dielectric coplanar plates substituting a traditional parallel plate sensor that are sensitive to laminate compaction during cure. FEM simulations were executed to develop the sensor, and then some experimental tests were carried out to verify the suitability of the designed sensor to measure the degree of cure in a laminate. The cure degree trend evaluated through the developed sensor was compared with that one noticed through a cure process simulation and with that one measured by a parallel plate sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellini C, Polini W, Sorrentino L (2014) A new class of thin composite parts for small batch productions. Adv Compos Lett 23(5):111–116

    Google Scholar 

  2. Sorrentino L, Bellini C (2015) Compaction influence on spring-in of thin composite parts: experimental and numerical results. J Compos Mater 49(17):2149–2158. doi:10.1177/0021998314542362

    Article  Google Scholar 

  3. Ersoy N, Garstka T, Potter K, Wisnom MR, Porter D, Clegg M, Stringer G (2010) Development of the properties of a carbon fibre reinforced thermosetting composite through cure. Compos A: Appl Sci Manuf 41(3):401–409. doi:10.1016/j.compositesa.2009.11.007

    Article  Google Scholar 

  4. Koziol M (2012) Experimental study on the effect of stitch arrangement on mechanical performance of GFRP laminates manufactured on a basis of stitched preforms. J Compos Mater 46(9):1067–1078. doi:10.1177/0021998311414947

    Article  Google Scholar 

  5. Antonucci V, Giordano M, Hsiao K-T, Advani SG (2002) A methodology to reduce thermal gradients due to the exothermic reactions in composites processing. Int J Heat Mass Transf 45(8):1675–1684. doi:10.1016/S0017-9310(01)00266-6

    Article  MATH  Google Scholar 

  6. Ruiz E, Trochu F (2006) Multi-criteria thermal optimization in liquid composite molding to reduce processing stresses and cycle time. Compos A: Appl Sci Manuf 37(6):913–924. doi:10.1016/j.compositesa.2005.06.010

    Article  Google Scholar 

  7. Ručigaj A, Alič B, Krajnc M, Šebenik U (2015) Curing of bisphenol A-aniline based benzoxazine using phenolic, amino and mercapto accelerators. Express Polymer Letters 9(7):647–657. doi:10.3144/expresspolymlett.2015.60

    Article  Google Scholar 

  8. Kim D, Centea T, Nutt SR (2014) In-situ cure monitoring of an out-of-autoclave prepreg: effects of out-time on viscosity, gelation and vitrification. Compos Sci Technol 102:132–138. doi:10.1016/j.compscitech.2014.07.027

    Article  Google Scholar 

  9. Kim D, Centea T, Nutt SR (2014) Out-time effects on cure kinetics and viscosity for an out-of-autoclave (OOA) prepreg: modelling and monitoring. Compos Sci Technol 100:63–69. doi:10.1016/j.compscitech.2014.05.027

    Article  Google Scholar 

  10. Laurent-Mounier A, Binétruy C, Krawczak P (2005) Multipurpose carbon fiber sensor design for analysis and monitoring of the resin transfer molding of polymer composites. Polym Compos 26(5):717–730. doi:10.1002/pc.20104

    Article  Google Scholar 

  11. Konstantopoulos S, Fauster E, Schledjewski R (2014) Monitoring the production of FRP composites: a review of in-line sensing methods. Express Polym Lett 8(11):823–840. doi:10.3144/expresspolymlett.2014.84

    Article  Google Scholar 

  12. Bang KG, Kwon JW, Lee DG, Lee JW (2001) Measurement of the degree of cure of glass fiber–epoxy composites using dielectrometry. J Mater Process Technol 113(1–3):209–214. doi:10.1016/S0924-0136(01)00657-4

    Article  Google Scholar 

  13. Carlone P, Palazzo GS (2012) Flow monitoring and permeability measurements in LCM processes by the means of a dielectric sensor. Key Eng Mater 504–506:289–294. doi:10.4028/www.scientific.net/KEM.504-506.289

    Article  Google Scholar 

  14. Carlone P, Palazzo GS (2014) Unsaturated and saturated flow front tracking in liquid composite molding processes using dielectric sensors. Appl Compos Mater. doi:10.1007/s10443-014-9422-3

    Google Scholar 

  15. Endres HE, Drost S (1991) Optimization of the geometry of gas-sensitive interdigital capacitors. Sensors Actuators B Chem 4(1–2):95–98. doi:10.1016/0925-4005(91)80182-J

    Article  Google Scholar 

  16. Zaretsky MC, Mouayad L, Melcher JR (1988) Continuum properties from interdigital electrode dielectrometry. IEEE Trans Electr Insul 23(6):897–917. doi:10.1109/14.16515

    Article  Google Scholar 

  17. Sheppard NF Jr, Tucker RC, Wu C (1993) Electrical conductivity measurements using microfabricated interdigitated electrodes. Anal Chem 65(9):1199–1202

    Article  Google Scholar 

  18. Lin J, Möller S, Obermeier E (1991) Two-dimensional and three-dimensional interdigital capacitors as basic elements for chemical sensors. Sensors Actuators B Chem 5(1–4):223–226. doi:10.1016/0925-4005(91)80251-E

    Article  Google Scholar 

  19. Skordos AA, Partridge IK (2007) Effects of tool-embedded dielectric sensors on heat transfer phenomena during composite cure. Polym Compos 28(2):139–152. doi:10.1002/pc.20277

    Article  Google Scholar 

  20. Sorrentino L, Bellini C, Capriglione D, Ferrigno L (2015) Local monitoring of polymerization trend by an interdigital dielectric sensor. Int J Adv Manuf Technol 79(5):1007–1016. doi:10.1007/s00170-015-6892-x

    Article  Google Scholar 

  21. Kim JS, Lee DG (1996) Analysis of dielectric sensors for the cure monitoring of resin matrix composite materials. Sensors Actuators B Chem 30(2):159–164. doi:10.1016/0925-4005(95)01761-J

    Article  Google Scholar 

  22. ASTM (2013) D2149. Standard Test Method for Permittivity (Dielectric Constant) And Dissipation Factor Of Solid Ceramic Dielectrics At Frequencies To 10 MHz And Temperatures To 500°C. ASTM International, West Conshohocken, PA. doi:10.1520/D2149

  23. Park HC, Goo NS, Min KJ, Yoon KJ (2003) Three-dimensional cure simulation of composite structures by the finite element method. Compos Struct 62(1):51–57

    Article  Google Scholar 

  24. Lin Liu X, Crouch IG, Lam YC (2000) Simulation of heat transfer and cure in pultrusion with a general-purpose finite element package. Compos Sci Technol 60(6):857–864. doi:10.1016/S0266-3538(99)00189-X

    Article  Google Scholar 

  25. Carlone P, Palazzo GS (2009) Thermo-chemical and rheological finite element analysis of the cure process of thick carbon-epoxy composite laminates. Int J Mater Form 2 (SUPPL. 1):137–140. doi:10.1007/s12289-009-0450-8

  26. Carlone P, Baran I, Hattel JH (2013) Palazzo GS (2013) computational approaches for modeling the multiphysics in pultrusion process. Adv Mech Eng. doi:10.1155/2013/301875

    Google Scholar 

  27. Joshi SC, Lam YC (2006) Integrated approach for modelling cure and crystallization kinetics of different polymers in 3D pultrusion simulation. J Mater Process Technol 174(1–3):178–182. doi:10.1016/j.jmatprotec.2006.01.003

    Article  Google Scholar 

  28. Teplinsky S, Gutman EM (1996) Computer simulation of process induced stress and strain development during cure of thick-section thermosetting composites. Comput Mater Sci 6(1):71–76. doi:10.1016/0927-0256(96)00035-3

    Article  Google Scholar 

  29. ASTM (2013) E2070. Standard Test Method for Kinetic Parameters by Differential Scanning Calorimetry Using Isothermal Methods. ASTM International, West Conshohocken, PA. doi:10.1520/E2070

  30. Sorrentino L, Tersigni L (2012) A method for cure process design of thick composite components manufactured by closed die technology. Appl Compos Mater 19(1):31–45. doi:10.1007/s10443-010-9179-2

    Article  Google Scholar 

  31. Sorrentino L, Polini W, Bellini C (2014) To design the cure process of thick composite parts: experimental and numerical results. Adv Compos Mater 23(3):225–238. doi:10.1080/09243046.2013.847780

    Article  Google Scholar 

  32. Sorrentino L, Bellini C (2015) Validation of a methodology for cure process optimization of thick composite laminates. Polym-Plast Technol Eng 54(17):1803–1811. doi:10.1080/03602559.2015.1050513

    Article  Google Scholar 

  33. Kim HS, Lee DG (2007) Reduction of fabricational thermal residual stress of the hybrid co-cured structure using a dielectrometry. Compos Sci Technol 67(1):29–44. doi:10.1016/j.compscitech.2006.05.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costanzo Bellini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorrentino, L., Bellini, C. In-process monitoring of cure degree by coplanar plate sensors. Int J Adv Manuf Technol 86, 2851–2859 (2016). https://doi.org/10.1007/s00170-016-8338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8338-5

Keywords

Navigation