Skip to main content
Log in

Forming limit curves in low-carbon steels: improved prediction by incorporating microstructural evolution

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Experimental forming limit curves (FLCs) were determined for two different grades of low-carbon steel: interstitial free (IF) and drawing quality (DQ). The grades had different interstitial content, clear differences in microstructural evolution, and differences in experimental FLCs. Microstructural evolution was generalized in terms of developments in crystallographic texture and in-grain misorientations. These were extrapolated further into dynamic values of normal anisotropy (\( \overline{r} \)) and strain hardening exponent (n), respectively. FLCs were simulated by finite element (FE) analysis. Simulations were conducted using constant (or initial) and dynamic material properties (namely, \( \overline{r} \) and n). Simulations using the dynamic variation in the material properties showed better comparison to the experimental FLCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodwin GM (1968) Application of strain analysis to sheet metal forming problems in press shop. Trans SAE paper no. 680093; Vol. 77

  2. Keeler SP, Backofen WA (1946) Plastic instability and fracture in sheets stretched over rigid punches. Trans ASM 56:30–48

    Google Scholar 

  3. Keeler SP (1965) Determination of forming limits in automotive stampings. Sheet Met Ind 42:683–695

    Google Scholar 

  4. Hecker SS (1975) Simple technique for determining forming limit curves. Sheet Met Ind 52:671–675

    Google Scholar 

  5. Tadros AK, Mellor PB (1978) An experimental study of the in-plane stretching of sheet metal. Int J Mech Sci 20:121–134

    Article  Google Scholar 

  6. Gronostajski J, Dolny A (1980) Memories Sci Rev Metall 4:570–578

    Google Scholar 

  7. Raghavan KS (1995) A simple technique to generate in-plane forming limit curves and selected application. Metall Trans A 26:2075–2084

    Article  Google Scholar 

  8. Sing WM, Rao KP (1993) Influence of material properties on sheet metal formability limits. J Mater Process Technol 37:37–51

    Article  Google Scholar 

  9. Lu ZH, Lee D (1987) Prediction of history-dependent forming limits by applying different hardening models. Int J Mech Sci 29:123–137

    Article  MATH  Google Scholar 

  10. Nakamachi E (1995) Sheet-forming process characterization by static-explicit anisotropic elastic–plastic finite-element simulation. J Mater Process Technol 50:116–132

    Article  Google Scholar 

  11. Yoshida T, Kayayama T, Usuda M (1995) Forming-limit analysis of hemispherical-punch stretching using the three-dimensional finite-element method. J Mater Process Technol 50:226–237

    Article  Google Scholar 

  12. Takuda H, Mori K, Takakura N, Yamaguchi K (2000) Finite element analysis of limit strains in biaxial stretching of sheet metals allowing for ductile fracture. Int J Mech Sci 42:785–798

    Article  MATH  Google Scholar 

  13. McGinty RD, McDowell DL (2004) Application of multiscale crystal plasticity models to forming limit diagrams. J Eng Mater Technol 126:285–291

    Article  Google Scholar 

  14. Campos HB, Butuc MC, Grácio JJ, Rocha JE, Duarte JMF (2006) Theoretical and experimental determination of the forming limit diagram for the AISI 304 stainless steel. J Mater Process Technol 179:56–60

    Article  Google Scholar 

  15. Aretz H (2007) Numerical analysis of diffuse and localized necking in orthotropic sheet metals. Int J Plast 23:798–840

    Article  MATH  Google Scholar 

  16. Ganjiani M, Assempour A (2007) An improved analytical approach for determination of forming limit diagrams considering the effects of yield functions. J Mater Process Technol 182:598–607

    Article  Google Scholar 

  17. Signorelli JW, Bertinetti MA, Turner PA (2009) Predictions of forming limit diagrams using a rate-dependent polycrystal self-consistent plasticity model. Int J Plast 25:1–25

    Article  MATH  Google Scholar 

  18. Hora P, Tong L, Reissner J (1996) A prediction method of ductile sheet metal failure in FE simulation. In: Numisheet 1996, Dearborn, Michigan, USA, pp 252–256

  19. Mattiasson K, Sigvant M, Larson M (2006) Methods for forming limit prediction in ductile metal sheets. In: IDDRG 2006. Porto, Portugal, pp 1–9

    Google Scholar 

  20. Franz G, Abed-Meraim F, Ben Zineb T, Lemoine X, Berveiller M (2009) Role of intragranular microstructure development in the macroscopic behavior of multiphase steels in the context of changing strain paths. Mater Sci Eng A 517(1–2):300–311

    Article  Google Scholar 

  21. Franz G, Abed-Meraim F, Ben Zineb T, Lemoine X, Berveiller M (2013) Strain localization analysis for single crystals and polycrystals: towards microstructure-ductility linkage. Int J Plast 48:1–33

    Article  Google Scholar 

  22. Franz G, Abed-Meraim, Balan T, Altmeyer G (2014) Investigation and comparative analysis of plastic instability criteria: application to forming limit diagrams. Int J Adv Manuf Technol 71:1247–1262

    Article  Google Scholar 

  23. Clift SE, Hartly P, Sturgess CEN, Rowe GW (1990) Fracture prediction in plastic deformation processes. Int J Mech Sci 32:1–17

    Article  Google Scholar 

  24. Takuda H, Mori K, Hatta N (1999) The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals. J Mater Process Technol 95:116–121

    Article  Google Scholar 

  25. Ozturk F, Lee D (2004) Analysis of forming limits using ductile fracture criteria. J Mater Process Technol 147:397–404

    Article  Google Scholar 

  26. Nandedkar VM (2000) Formability studies on deep drawing quality steel. PhD thesis, IIT Bombay, Mumbai

  27. Yerra SK, Vankudre HV, Date PP, Samajdar I (2004) Effect of strain path on the formability of a low carbon steel—on the textural and microtextural developments. J Eng Mater Technol 126:53–61

    Article  Google Scholar 

  28. Raveendra S, Kanjarla AK, Paranjape H, Mishra SK, Mishra S, Delannay L, Samajdar I, Van Houtte P (2011) Strain mode dependence of deformation texture developments: microstructural origin. Metall Trans A 42A:2113–2124

    Article  Google Scholar 

  29. Franz G, Abed-Meraim F, Lorrain J-P, Zineb TB, Lemoine X, Berveiller M (2009) Ellipticity loss analysis for tangent moduli deduced from a large strain elastic–plastic self-consistent model. Int J Plast 25:205–238

    Article  MATH  Google Scholar 

  30. Böhlke T, Bondár G, Estrin Y, Lebyodkin MA (2009) Geometrically non-linear modeling of the Portevin–Le Chatelier effect. Comput Mater Sci 44:1076–1088

    Article  Google Scholar 

  31. Franz G, Abed-Meraim F, Zineb TB, Lemoine X, Berveiller M (2011) Impact of intragranular microstructure development on ductility limits of multiphase steels. Mater Sci Eng A 528:3777–3785

    Article  Google Scholar 

  32. Hill R (1948) A theory of yielding and plastic flow of anisotropic metals. Proc Roy Soc Lond A 193:281–297

    Article  MathSciNet  MATH  Google Scholar 

  33. Nowell MM, Wright SI (2005) Orientation effects on indexing of electron backscattered diffraction patterns. Ultramicroscopy 103:41

    Article  Google Scholar 

  34. Bunge HJ (1982) Texture analysis in materials science. Butterworths, London

    Google Scholar 

  35. Khatirkar R, Mani Krishna KV, Kestens LAI, Petrov R, Pant P, Samajdar I (2011) Strain localizations in ultra low carbon steel: exploring the role of dislocations. ISIJ Int 51(5):849–856

    Article  Google Scholar 

  36. Verlinden B, Driver J, Samajdar I, Doherty RD (2007) Thermo-mechanical processing of metallic materials. ISBN–978-0-08-044497-0, Pergamon materials series – series ed. R.W. Cahn, Elsevier, Amsterdam

  37. Ray RK, Jonas JJ, Hook RE (1994) Cold rolling and annealing textures in low carbon and extra low carbon steels. Int Mater Rev 39(4):129–171

    Article  Google Scholar 

  38. Nandedkar VM, Samajdar I, Narashiman K (2001) Development of grain interior strain localizations during plane strain deformation of a deep drawing quality steel. ISIJ Int 41(12):1517

    Article  Google Scholar 

  39. Van-Houtte P (1995) MTM-FHM software system, version 2. MTM, KU Leuven, Belgium

    Google Scholar 

  40. Van Houtte P, Li S, Seefeldt M, Delannay L (2005) Deformation texture prediction: from the Taylor model to the advanced Lamel model. Int J Plast 21:589–624

    Article  MATH  Google Scholar 

  41. Delannay L, Jacques PJ, Kalidindi SR (2006) Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons. Int J Plast 22:1879–1898

    Article  MATH  Google Scholar 

  42. Gladman T (1997) The physical metallurgy of microalloyed steels. The Institute of Materials, London

    Google Scholar 

  43. Wang W, Wagoner RH, Wang XJ (1996) Measurement of friction under sheet forming conditions. Metall Mater Trans A 27A:3971–3981

    Article  Google Scholar 

  44. Wilkund D, Rosen BG, Gunnarsson L (2008) Frictional mechanisms in mixed lubricated regime in steel sheet metal forming. Wear 264:474–479

    Article  Google Scholar 

  45. Mishra SK, Sharvari GD, Pant P, Narasimhan K, Samajdar I (2009) Improved predictability of forming limit curves through microstructural inputs. Int J Metal Form 2:59–67

    Article  Google Scholar 

  46. Hutchinson WB (1984) Development and control of annealing textures in low carbon steel. Int Mater Rev 29(1):25–42

    Google Scholar 

  47. Vadavadagi BH, Shekhawat SK, Narasimhan K, Samajdar I (2014) Improved prediction of strain distribution during mechanical and hydro-mechanical deep drawing processes using microstructure-based dynamic strain hardening and anisotropy. Int J Strain Anal Eng Des 50(1):51–60

    Article  Google Scholar 

  48. Basavaraj V, Shekhawat SK, Narasimhan K, Samajdar I (2015) Constrained tensile stretching of steel strips under different lubrication: predicting macroscopic strain distributions with microstructural inputs. Int J Mater Form 8:327–339

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Narasimhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadavadagi, B.H., Shekhawat, S.K., Samajdar, I. et al. Forming limit curves in low-carbon steels: improved prediction by incorporating microstructural evolution. Int J Adv Manuf Technol 86, 1027–1036 (2016). https://doi.org/10.1007/s00170-015-8224-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8224-6

Keywords

Navigation