Skip to main content
Log in

Development of a new process for forging plates using intensive plastic deformation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A new method of plate forging with V-shaped dies is proposed. The deformation state of a metal workpiece during forging has been investigated. The proposed method of forging increases the uniformity of the strain distribution with a high level of strain in the workpiece. The values of angles for V-shaped dies range from 120° to 140°. This range of die angles is the most rational from the standpoint of strain distribution uniformity and maximum widening. V-shaped die usage for plate forging leads to an increase in widening coefficient of 35 % in comparison with forging with flat dies. This forging technique provides the possibility of eliminating the operation of billet upsetting during plate forging. V-shaped die usage for plate forging also results in a decrease in deformation load in comparison with flat die forging. The scheme of plate forging by V-shaped dies results in the formation of an irregular compression state in the axial zone. It leads to the closing of defects during forging. The new technology of plate forging with V-shaped dies was tested under industrial conditions. The forged piece has satisfied the requirements of the customer’s technical criteria. The ultrasonic check results have shown that the application of the proposed technology provides an increase in metal continuity within the central zone of the forged piece. The experimentally derived forging results have confirmed that upsetting operations can be eliminated, and as a result, energy expenditures and the overall cycle time of the forging operation have been reduced by 15 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ameli A, Movahhedy MR (2007) A parametric study on residual stresses and forging load in cold radial forging process. Int J Adv Manuf Technol 33(1–2):7–17. doi:10.1007/s00170-006-0453-2

    Article  Google Scholar 

  2. Banaszek G, Szota P (2005) A comprehensive numerical analysis of the effect of relative feed during the operation of stretch forging of large ingots in profiled anvils. J Mater Process Technol 169(3):437–444. doi:10.1016/j.jmatprotec.2005.03.018

    Article  Google Scholar 

  3. Chen K, Yang YT, Liu KJ, Shao GJ (2010) Simulation of void defect evolvement during the forging of steel ingot. Adv Mat Res 97–101:3079–3084. doi:10.4028/www.scientific.net/AMR.97-101.3079

    Article  Google Scholar 

  4. Chen K, Yang Y, Shao G, Liu K (2012) Strain function analysis method for void closure in the forging process of the large-sized steel ingot. Comp Mater Sci 51(1):72–77. doi:10.1016/j.commatsci.2011.07.011

    Article  Google Scholar 

  5. Gangopadhyay T, Ohdar RK, Pratihar DK, Basak I (2011) Three-dimensional finite element analysis of multi-stage hot forming of railway wheels. Int J Adv Manuf Technol 53(1–4):301–312. doi:10.1007/s00170-010-2810-4

    Article  Google Scholar 

  6. Wang J, Fu P, Liu H, Li D, Li Y (2012) Shrinkage porosity criteria and optimized design of a 100-ton 30Cr2Ni4MoV forging ingot. Mater Design 35:446–456. doi:10.1016/j.matdes.2011.09.056

    Article  Google Scholar 

  7. Zhang X-X, Cui Z-S, Chen W, Li Y (2009) A criterion for void closure in large ingots during hot forging. J Mater Process Technol 209(4):1950–1959. doi:10.1016/j.jmatprotec.2008.04.051

    Article  Google Scholar 

  8. Zhbankov IG, Perig AV (2013) Forging of ingots without hot tops. Mater Manuf Process 28(3):229–235. doi:10.1080/10426914.2012.718472

    Article  Google Scholar 

  9. Zhbankov IG, Perig AV (2013) Intensive shear deformation in billets during forging with specially formed anvils. Mater Manuf Process 28(5):577–583. doi:10.1080/10426914.2013.763974

    Article  Google Scholar 

  10. Zhbankov IG, Markov OE, Perig AV (2014) Rational parameters of profiled workpieces for an upsetting process. Int J Adv Manuf Technol 72(5–8):865–872. doi:10.1007/s00170-014-5727-5

    Article  Google Scholar 

  11. Kakimoto H, Arikawa T, Takahashi Y, Tanaka T, Imaida Y (2010) Development of forging process design to close internal voids. J Mater Process Technol 210(3):415–422. doi:10.1016/j.jmatprotec.2009.09.022

    Article  Google Scholar 

  12. Kitamura K, Terano M (2014) Determination of local properties of plastic anisotropy in thick plate by small-cube compression test for precise simulation of plate forging. CIRP Ann - Manuf Technol 63(1):293–296. doi:10.1016/j.cirp.2014.03.038

    Article  Google Scholar 

  13. Kim YD, Cho JR, Bae WB (2011) Efficient forging process to improve the closing effect of the inner void on an ultra-large ingot. J Mater Process Technol 211(6):1005–1013. doi:10.1016/j.jmatprotec.2011.01.001

    Article  Google Scholar 

  14. Lee YS, Lee SU, Van Tyne CJ, Joo BD, Moon YH (2011) Internal void closure during the forging of large cast ingots using a simulation approach. J Mater Process Technol 211(6):1136–1145. doi:10.1016/j.jmatprotec.2011.01.017

    Article  Google Scholar 

  15. Ma Q, Lin Z-q, Yu Z-q (2009) Prediction of deformation behavior and microstructure evolution in heavy forging by FEM. Int J Adv Manuf Technol 40(3–4):253–260. doi:10.1007/s00170-007-1337-9

    Article  Google Scholar 

  16. Pantalé O, Gueye B (2013) Influence of the constitutive flow law in FEM simulation of the radial forging process. Journal of Engineering 2013, Article ID 231847, 8 pp. doi: 10.1155/2013/231847

  17. Park CY, Yang DY (1997) Modelling of void crushing for large-ingot hot forging. J Mater Process Technol 67(1–3):195–200. doi:10.1016/S0924-0136(96)02843-9

    Google Scholar 

  18. Park CY, Yang DY (1997) A study of void crushing in large forgings: II. Estimation of bonding efficiency by finite-element analysis. J Mater Process Technol 72(1):32–41. doi:10.1016/S0924-0136(97)00126-X

    Article  Google Scholar 

  19. Chen J, Chandrashekhara K, Richards VL, Lekakh SN (2010) Three-dimensional nonlinear finite element analysis of hot radial forging process for large diameter tubes. Mater Manuf Process 25(7):669–678. doi:10.1080/10426910903536790

    Article  Google Scholar 

  20. Attia MF, El-Shafei AG, Mahmoud FF (2014) Nonlinear analysis of frictional thermo-viscous elastic contact problem using FEM. Int J Appl Mech 6(3):26. doi:10.1142/S1758825114500288

    Article  Google Scholar 

  21. Copetti M, Fernandez J (2011) Finite element approximation to a contact problem for a nonlinear thermoviscoelastic beam. J Math Anal Appl 383(2):506–521. doi:10.1016/j.jmaa.2011.05.055

    Article  MathSciNet  MATH  Google Scholar 

  22. Atanasovska I, Moncilovic G, Olivera E (2011) Rate independent plasticity—a material nonlinearity in finite element analysis. 11th Int. conf. RaDMI 1:435–443

    Google Scholar 

  23. Zhang ZJ, Dai GZ, Wu SN, Dong LX, Liu LL (2009) Simulation of 42CrMo steel billet upsetting and its defects analyses during forming process based on the software DEFORM-3D. Mater Sci Eng A 499(1–2):49–52. doi:10.1016/j.msea.2007.11.135

    Article  Google Scholar 

  24. Scarabello D, Ghiotti A, Bruschi B (2010) FE modeling of large ingot hot forging/D. Scarabello, A. Ghiotti, B. Bruschi. Int J Mater Form 3(Suppl. 1):335–338. doi:10.1007/s12289-010-0775-3

    Article  Google Scholar 

  25. Tanaka Y, SATO I (2011) Development of high purity large forgings for nuclear power plants. J Nucl Mater 417(1–3):854–859. doi:10.1016/j.jnucmat.2010.12.305

    Article  Google Scholar 

  26. Touati D, Cederbaum G (1997) Stress relaxation of nonlinear thermoviscoelastic materials predict from known creep. Mech Time-Depend Mat 1(3):321–330. doi:10.1023/A:1009759205294

    Article  Google Scholar 

  27. Choi SK, Chun MS, Van Tyne CJ, Moon YH (2006) Optimization of open die forging of round shapes using FEM analysis. J Mater Process Technol 172(1):88–95. doi:10.1016/j.jmatprotec.2005.09.010

    Article  Google Scholar 

  28. Mao C, Zhou ZH, Ren YH, Zhang B (2010) Analysis and FEM simulation of temperature field in wet surface grinding. Mater Manuf Process 25(6):399–406. doi:10.1080/10426910903124811

    Article  Google Scholar 

  29. Narayan A, Yadava V (2012) Investigation of temperature distribution in the workpiece during creep feed surface grinding using finite element method. Mater Manuf Process 27(10):1101–1109. doi:10.1080/10426914.2011.654154

    Article  Google Scholar 

  30. Markov OE, Oleshko MV, Mishina VI (2011) Development of energy-saving technological process of shafts forging weighting more than 100 tons without ingot upsetting. Metall Mining Ind 3(7):87–90

    Google Scholar 

  31. Markov OE (2012) Forging of large pieces by tapered faces. Steel in Translat 42(12):808–810. doi:10.3103/S0967091212120054

    Article  Google Scholar 

  32. Chang CM, Chen WH (1996) Thermoviscoelastic contact analysis with friction by an incremental thermal relaxation procedure. Comput Method Appl M 130(1–2):151–162. doi:10.1016/0045-7825(95)00919-1

    Article  MATH  Google Scholar 

  33. Liu L, Liao B, Li D, Li Q, Wang Y, Yang Q (2011) Thermal-elastic-plastic simulation of internal stress fields of quenched steel 40Cr cylindrical specimens by FEM. Mater Manuf Process 5:732–739. doi:10.1080/10426910903367428

    Article  Google Scholar 

  34. Jafarzadeh H, Zadshakoyan M (2011) Numerical and experimental studies of splines produced by injection forging process. Mater Manuf Process 5:703–712. doi:10.1080/10426914.2010.496124

    Article  Google Scholar 

  35. Haj-Ali RM, Muliana AH (2004) Numerical finite element formulation of the Schapery non-linear viscoelastic material model. Int J Numer Meth Eng 59:25–45. doi:10.1002/nme.861

    Article  MATH  Google Scholar 

  36. Markov OE (2012) The establishment of analytical relation between stress and strain rate for the simulation of hot deformation. J Forging Stamping Production 7:32–37, in Russian

    Google Scholar 

  37. Barabash AV, Gavril’chenko EY, Gribkov EP, Markov OE (2014) Straightening of sheet with correction of waviness. Steel Translat 44(1):916–920. doi:10.3103/S096709121412002X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg E. Markov.

Ethics declarations

Disclosure

The submission of the authors’ paper implies that it has not been previously published, that it is not under consideration for publication elsewhere, and that it will not be published elsewhere in the same form without the written permission of the editors.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, O.E., Perig, A.V., Markova, M.A. et al. Development of a new process for forging plates using intensive plastic deformation. Int J Adv Manuf Technol 83, 2159–2174 (2016). https://doi.org/10.1007/s00170-015-8217-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8217-5

Keywords

Navigation