Skip to main content
Log in

Evaluation of strain and stress states in the single point incremental forming process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Single point incremental forming (SPIF) is a promising manufacturing process suitable for small batch production. Furthermore, the material formability is enhanced in comparison with the conventional sheet metal forming processes, resulting from the small plastic zone and the incremental nature. Nevertheless, the further development of the SPIF process requires the full understanding of the material deformation mechanism, which is of great importance for the effective process optimization. In this study, a comprehensive finite element model has been developed to analyse the state of strain and stress in the vicinity of the contact area, where the plastic deformation increases by means of the forming tool action. The numerical model is firstly validated with experimental results from a simple truncated cone of AA7075-O aluminium alloy, namely, the forming force evolution, the final thickness and the plastic strain distributions. In order to evaluate accurately the through-thickness gradients, the blank is modelled with solid finite elements. The small contact area between the forming tool and the sheet produces a negative mean stress under the tool, postponing the ductile fracture occurrence. On the other hand, the residual stresses in both circumferential and meridional directions are positive in the inner skin of the cone and negative in the outer skin. They arise predominantly along the circumferential direction due to the geometrical restrictions in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeswiet J, Micari F, Hirt G et al (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54:88–114. doi:10.1016/S0007-8506(07)60021-3

    Article  Google Scholar 

  2. Emmens WC, Sebastiani G, van den Boogaard AH (2010) The technology of incremental sheet forming—a brief review of the history. J Mater Process Technol 210:981–997. doi:10.1016/j.jmatprotec.2010.02.014

    Article  Google Scholar 

  3. Echrif SBM, Hrairi M (2011) Research and progress in incremental sheet forming processes. Mater Manuf Process 26:1404–1414. doi:10.1080/10426914.2010.544817

    Article  Google Scholar 

  4. Meier H, Buff B, Laurischkat R, Smukala V (2009) Increasing the part accuracy in dieless robot-based incremental sheet metal forming. CIRP Ann Manuf Technol 58:233–238. doi:10.1016/j.cirp.2009.03.056

    Article  Google Scholar 

  5. Filice L, Fratini L, Micari F (2002) Analysis of material formability in incremental forming. CIRP Ann Manuf Technol 51:199–202. doi:10.1016/S0007-8506(07)61499-1

    Article  Google Scholar 

  6. Jeswiet J, Young D (2005) Forming limit diagrams for single-point incremental forming of aluminium sheet. Proc Inst Mech Eng B J Eng Manuf 219:359–364. doi:10.1243/095440505X32210

    Article  Google Scholar 

  7. Essa K, Hartley P (2010) An assessment of various process strategies for improving precision in single point incremental forming. Int J Mater Form 4:401–412. doi:10.1007/s12289-010-1004-9

    Article  Google Scholar 

  8. Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in single point incremental forming: state of the art and future trends. J Mater Process Technol 191:390–395. doi:10.1016/j.jmatprotec.2007.03.066

    Article  Google Scholar 

  9. Lasunon O, Knight WA (2007) Comparative investigation of single-point and double-point incremental sheet metal forming processes. Proc Inst Mech Eng B J Eng Manuf 221:1725–1732. doi:10.1243/09544054JEM865

    Article  Google Scholar 

  10. Lu H, Kearney M, Li Y et al (2015) Model predictive control of incremental sheet forming for geometric accuracy improvement. Int J Adv Manuf Technol. doi:10.1007/s00170-015-7431-5

    Google Scholar 

  11. Rauch M, Hascoet J-Y, Hamann J-C, Plenel Y (2009) Tool path programming optimization for incremental sheet forming applications. Comput Aided Des 41:877–885. doi:10.1016/j.cad.2009.06.006

    Article  Google Scholar 

  12. Hirt G, Ames J, Bambach M, Kopp R (2004) Forming strategies and process modelling for CNC incremental sheet forming. CIRP Ann Manuf Technol 53:203–206. doi:10.1016/S0007-8506(07)60679-9

    Article  Google Scholar 

  13. Azaouzi M, Lebaal N (2012) Tool path optimization for single point incremental sheet forming using response surface method. Simul Model Pract Theory 24:49–58. doi:10.1016/j.simpat.2012.01.008

    Article  Google Scholar 

  14. Mohammadi A, Vanhove H, Van Bael A, Duflou JR (2014) Towards accuracy improvement in single point incremental forming of shallow parts formed under laser assisted conditions. Int J Mater Form. doi:10.1007/s12289-014-1203-x

    Google Scholar 

  15. Duflou JR, Callebaut B, Verbert J, De Baerdemaeker H (2008) Improved SPIF performance through dynamic local heating. Int J Mach Tools Manuf 48:543–549. doi:10.1016/j.ijmachtools.2007.08.010

    Article  Google Scholar 

  16. Duflou J, Tunçkol Y, Szekeres A, Vanherck P (2007) Experimental study on force measurements for single point incremental forming. J Mater Process Technol 189:65–72. doi:10.1016/j.jmatprotec.2007.01.005

    Article  Google Scholar 

  17. Durante M, Formisano A, Langella A, Capece Minutolo FM (2009) The influence of tool rotation on an incremental forming process. J Mater Process Technol 209:4621–4626. doi:10.1016/j.jmatprotec.2008.11.028

    Article  Google Scholar 

  18. Durante M, Formisano A, Langella A (2010) Observations on the influence of tool-sheet contact conditions on an incremental forming process. J Mater Eng Perform 20:941–946. doi:10.1007/s11665-010-9742-x

    Article  Google Scholar 

  19. Aerens R, Eyckens P, Van Bael A, Duflou JR (2009) Force prediction for single point incremental forming deduced from experimental and FEM observations. Int J Adv Manuf Technol 46:969–982. doi:10.1007/s00170-009-2160-2

    Article  Google Scholar 

  20. Li Y, Liu Z, Lu H et al (2014) Efficient force prediction for incremental sheet forming and experimental validation. Int J Adv Manuf Technol 73:571–587. doi:10.1007/s00170-014-5665-2

    Article  Google Scholar 

  21. Fiorentino A (2013) Force-based failure criterion in incremental sheet forming. Int J Adv Manuf Technol 68:557–563. doi:10.1007/s00170-013-4777-4

    Article  Google Scholar 

  22. Lu B, Fang Y, Xu DK et al (2014) Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. Int J Mach Tools Manuf 85:14–29. doi:10.1016/j.ijmachtools.2014.04.007

    Article  Google Scholar 

  23. Lu B, Ou H, Shi SQ et al (2014) Titanium based cranial reconstruction using incremental sheet forming. Int J Mater Form. doi:10.1007/s12289-014-1205-8

    Google Scholar 

  24. Jackson K, Allwood J (2009) The mechanics of incremental sheet forming. J Mater Process Technol 209:1158–1174. doi:10.1016/j.jmatprotec.2008.03.025

    Article  Google Scholar 

  25. Lu B, Fang Y, Xu DK et al (2015) Investigation of material deformation mechanism in double side incremental sheet forming. Int J Mach Tools Manuf 93:37–48. doi:10.1016/j.ijmachtools.2015.03.007

    Article  Google Scholar 

  26. Yamashita M, Gotoh M, Atsumi S-Y (2008) Numerical simulation of incremental forming of sheet metal. J Mater Process Technol 199:163–172. doi:10.1016/j.jmatprotec.2007.07.037

    Article  Google Scholar 

  27. Eyckens P, Belkassem B, Henrard C et al (2010) Strain evolution in the single point incremental forming process: digital image correlation measurement and finite element prediction. Int J Mater Form 4:55–71. doi:10.1007/s12289-010-0995-6

    Article  Google Scholar 

  28. Smith J, Malhotra R, Liu WK, Cao J (2013) Deformation mechanics in single-point and accumulative double-sided incremental forming. Int J Adv Manuf Technol 69:1185–1201. doi:10.1007/s00170-013-5053-3

    Article  Google Scholar 

  29. Silva MB, Skjoedt M, Bay N, Martins PAF (2009) Revisiting single-point incremental forming and formability/failure diagrams by means of finite elements and experimentation. J Strain Anal Eng Des 44:221–234. doi:10.1243/03093247JSA522

    Article  Google Scholar 

  30. Bambach M (2014) Fast simulation of incremental sheet metal forming by adaptive remeshing and subcycling. Int J Mater Form. doi:10.1007/s12289-014-1204-9

    Google Scholar 

  31. Ben Ayed L, Robert C, Delamézière A et al (2014) Simplified numerical approach for incremental sheet metal forming process. Eng Struct 62–63:75–86. doi:10.1016/j.engstruct.2014.01.033

    Article  Google Scholar 

  32. Elford M, Saha P, Seong D et al (2013) Benchmark 3—incremental sheet forming. AIP Conf Proc 1567:227–261. doi:10.1063/1.4849983

    Article  Google Scholar 

  33. Menezes LF, Teodosiu C (2000) Three-dimensional numerical simulation of the deep-drawing process using solid finite elements. J Mater Process Technol 97:100–106. doi:10.1016/S0924-0136(99)00345-3

  34. Oliveira MC, Alves JL, Menezes LF (2008) Algorithms and strategies for treatment of large deformation frictional contact in the numerical simulation of deep drawing process. Arch Comput Methods Eng 15:113–162. doi:10.1007/s11831-008-9018-x

  35. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92:353–375. doi:10.1016/0045-7825(91)90022-X

  36. Menezes LF, Neto DM, Oliveira MC, Alves JL (2011) Improving computational performance through HPC techniques: case study using DD3IMP in-house code. AIP Conf Proc 1353:1220–1225. doi:10.1063/1.3589683

  37. Neto DM, Oliveira MC, Menezes LF, Alves JL (2014) Applying Nagata patches to smooth discretized surfaces used in 3D frictional contact problems. Comput Methods Appl Mech Eng 271:296–320. doi:10.1016/j.cma.2013.12.008

  38. Neto DM, Oliveira MC, Menezes LF, Alves JL (2013) Nagata patch interpolation using surface normal vectors evaluated from the IGES file. Finite Elem Anal Des 72:35–46. doi:10.1016/j.finel.2013.03.004

  39. Hughes TJR (1980) Generalization of selective integration procedures to anisotropic and nonlinear media. Int J Numer Methods Eng 15:1413–1418. doi:10.1002/nme.1620150914

    Article  MathSciNet  MATH  Google Scholar 

  40. Barlat F, Lege DJ, Brem JC (1991) A six-component yield function for anisotropic materials. Int J Plast 7:693–712. doi:10.1016/0749-6419(91)90052-Z

    Article  Google Scholar 

  41. Hosford WF (1972) A generalized isotropic yield criterion. J Appl Mech 39:607. doi:10.1115/1.3422732

    Article  Google Scholar 

  42. Filice L, Ambrogio G, Micari F (2006) On-line control of single point incremental forming operations through punch force monitoring. CIRP Ann Manuf Technol 55:245–248. doi:10.1016/S0007-8506(07)60408-9

    Article  Google Scholar 

  43. Flores P, Duchene L, Bouffioux C et al (2007) Model identification and FE simulations: effect of different yield loci and hardening laws in sheet forming. Int J Plast 23:420–449. doi:10.1016/j.ijplas.2006.05.006

    Article  MATH  Google Scholar 

  44. Li Y, Daniel WJT, Liu Z et al (2015) Deformation mechanics and efficient force prediction in single point incremental forming. J Mater Process Technol 221:100–111. doi:10.1016/j.jmatprotec.2015.02.009

    Article  Google Scholar 

  45. Khan MS, Coenen F, Dixon C et al (2014) An intelligent process model: predicting springback in single point incremental forming. Int J Adv Manuf Technol 76:2071–2082. doi:10.1007/s00170-014-6431-1

    Article  Google Scholar 

  46. Duflou JR, Vanhove H, Verbert J et al (2010) Twist revisited: twist phenomena in single point incremental forming. CIRP Ann Manuf Technol 59:307–310. doi:10.1016/j.cirp.2010.03.018

    Article  Google Scholar 

  47. Wu SH, Reis A, Andrade Pires FM et al (2012) Study of tool trajectory in incremental forming. Adv Mater Res 472-475:1586–1591. doi:10.4028/www.scientific.net/AMR.472-475.1586

  48. Avitzur B, Yang CT (1960) Analysis of power spinning of cones. J Eng Ind 82:231. doi:10.1115/1.3663052

    Article  Google Scholar 

  49. Young D, Jeswiet J (2004) Wall thickness variations in single-point incremental forming. Proc Inst Mech Eng B J Eng Manuf 218:1453–1459. doi:10.1243/0954405042418400

    Article  Google Scholar 

  50. Hussain G, Hayat N, Gao L (2008) An experimental study on the effect of thinning band on the sheet formability in negative incremental forming. Int J Mach Tools Manuf 48:1170–1178. doi:10.1016/j.ijmachtools.2008.02.003

    Article  Google Scholar 

  51. Skjoedt M, Hancock MH, Bay N (2007) Creating helical tool paths for single point incremental forming. Key Eng Mater 344: 583–590. doi:10.4028/www.scientific.net/KEM.344.583

  52. Zhu H, Liu Z, Fu J (2010) Spiral tool-path generation with constant scallop height for sheet metal CNC incremental forming. Int J Adv Manuf Technol 54:911–919. doi:10.1007/s00170-010-2996-5

    Article  Google Scholar 

  53. Hussain G, Gao L (2007) A novel method to test the thinning limits of sheet metals in negative incremental forming. Int J Mach Tools Manuf 47:419–435. doi:10.1016/j.ijmachtools.2006.06.015

    Article  Google Scholar 

  54. Madeira T, Silva CMA, Silva MB, Martins PAF (2015) Failure in single point incremental forming. Int J Adv Manuf Technol. doi:10.1007/s00170-014-6381-7

    Google Scholar 

  55. Dejardin S, Thibaud S, Gelin JC, Michel G (2010) Experimental investigations and numerical analysis for improving knowledge of incremental sheet forming process for sheet metal parts. J Mater Process Technol 210:363–369. doi:10.1016/j.jmatprotec.2009.09.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Neto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neto, D.M., Martins, J.M.P., Oliveira, M.C. et al. Evaluation of strain and stress states in the single point incremental forming process. Int J Adv Manuf Technol 85, 521–534 (2016). https://doi.org/10.1007/s00170-015-7954-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7954-9

Keywords

Navigation