Principles and applications of trans-wafer processing using a 2-μm thulium fiber laser

  • Ilya Mingareev
  • Nils Gehlich
  • Tobias Bonhoff
  • Ali Abdulfattah
  • Alex M. Sincore
  • Pankaj Kadwani
  • Lawrence Shah
  • Martin Richardson


A self-developed nanosecond-pulsed thulium fiber laser operating at the wavelength λ = 2 μm was used to selectively modify the front and the back surfaces of various uncoated and metal-coated silicon and gallium arsenide wafers utilizing transparency of semiconductors at this wavelength. This novel processing regime was studied in terms of the process parameter variations, i.e., pulse energy and pulse duration, and the corresponding modification fluence thresholds were determined. The results revealed nearly debris-free back surface processing of wafers, in which modifications could be induced without affecting the front surfaces. The back surface modification threshold of Si was significantly higher than at the front surface due to non-linear absorption and aberration effects observed in experiments. A qualitative study of the underlying physical mechanisms responsible for material modification was performed, including basic analytical modeling and z-scan measurements. Multi-photon absorption, surface-enhanced absorption at nano- and microscopic defect sites, and damage accumulation effects are considered the main physical mechanisms accountable for consistent surface modifications. Applications of trans-wafer processing in removal of thin single- and multi-material layers from the back surface of Si wafers, both in single tracks and large areas, are presented.


Infrared lasers Laser materials processing Semiconductors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kumagai M, Uchiyama N, Ohmura E, Sugiura R, Atsumi K, Fukumitsu K (2007) Advanced dicing technology for semiconductor wafer—stealth dicing. IEEE Trans Semicond Manuf 20(3):259–265CrossRefGoogle Scholar
  2. 2.
    Ohmura E, Fukuyo F, Fukumitsu K, Morita H (2006) Internal modified-layer formation mechanism into silicon with nanosecond laser. J Achiev Mater Manuf Eng 17(1-2):381–384Google Scholar
  3. 3.
    Bärsch N, Körber K, Ostendorf A, Tönshoff KH (2003) Ablation and cutting of planar silicon devices using femtosecond laser pulses. Appl Phys A 77:237–242Google Scholar
  4. 4.
    Zorba V, Boukos N, Zergioti I, Fotakis C (2008) Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties. Appl Opt 47(11):1846–1850CrossRefGoogle Scholar
  5. 5.
    Brown WL (1983) Laser processing of semiconductors. In: Bass M (ed) Laser materials processing. Elsevier, vol. 3, pp. 337--406Google Scholar
  6. 6.
    Boulais E, Fantoni J, Chateauneuf A, Savaria Y, Meunier M (2011) Laser-induced resistance fine tuning of integrated polysilicon thin-film resistors. IEEE Trans Electron Devices 58(2):572–575CrossRefGoogle Scholar
  7. 7.
    Rapp L, Haberl B, Bradby JE, Gamaly EG, Williams JS, Rode AV (2014) Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface. Appl Phys A 114:33–43CrossRefGoogle Scholar
  8. 8.
    Xu Z, Leong KH, Sanders PG (2000) Laser surface alloying of silicon into aluminum casting alloys. J Laser Appl 12(4):160–170CrossRefGoogle Scholar
  9. 9.
    Meseth M, Kunert BC, Bitzer L, Kunze F, Meyer S, Kiefer F, Dehnen M, Orthner H, Petermann N, Kummer M, Wiggers H, Harder N-P, Benson N, Schmechel R (2013) Excimer laser doping using highly doped silicon nanoparticles. Phys Status Solidi A 210(11):2456–2462CrossRefGoogle Scholar
  10. 10.
    Wang X, Shen ZH, Lu J, Ni XW (2010) Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes. J Appl Phys 108:033103CrossRefGoogle Scholar
  11. 11.
    Kuanr AV, Bansal SK, Srivastava GP (1996) Laser induced damage in GaAs at 1.06 μm wavelength: surface effects. Opt Laser Technol 28(1):25–34CrossRefGoogle Scholar
  12. 12.
    Lynn Smith J (1972) Surface damage of GaAs from 0.694 and 1.06 laser radiation. J Appl Phys 43:3399CrossRefGoogle Scholar
  13. 13.
    Qi H, Wang Q, Zhang X, Liu Z, Zhang S, Chang J (2011) Theoretical and experimental study of laser induced damage on GaAs by nanosecond pulsed irradiation. Opt Lasers Eng 49:285–291CrossRefGoogle Scholar
  14. 14.
    Hendow ST, Shakir SA (2010) Structuring materials with nanosecond laser pulses. Opt Express 18(10):10188CrossRefGoogle Scholar
  15. 15.
    Garg A, Kapoor A, Tripathi KN (2003) Laser-induced damage studies in GaAs. Opt Laser Technol 35:21–24CrossRefGoogle Scholar
  16. 16.
    Parsi Sreenivas VV, Bülters M, Bergmann RB (2012) Microsized subsurface modification of mono-crystalline silicon via non-linear absorption. J Eur Opt Soc Rapid Publ 7:12035CrossRefGoogle Scholar
  17. 17.
    Nejadmalayeri AH, Herman PR, Burghoff J, Will M, Nolte S, Tünnermann A (2005) Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses. Opt Lett 30:964CrossRefGoogle Scholar
  18. 18.
    Verburg PC, Römer GRBE, Huis in ‘t Veld AJ (2014) Two-photon-induced internal modification of silicon by erbium-doped fiber laser. Opt Express 22(18):21958–21971CrossRefGoogle Scholar
  19. 19.
    Modsching N, Kadwani P, Sims RA, Leick L, Broeng J, Shah L, Richardson M (2011) Lasing in thulium-doped polarizing photonic crystal fiber. Opt Lett 36:3873CrossRefGoogle Scholar
  20. 20.
    Kadwani P, Jollivet C, Sims RA, Schülzgen A, Shah L, Richardson M (2012) Comparison of higher-order mode suppression and Q-switched laser performance in thulium-doped large mode area and photonic crystal fibers. Opt Express 20(22):24295–24303KCrossRefGoogle Scholar
  21. 21.
    Stutzki F, Jansen F, Jauregui C, Limpert J, Tünnermann A (2013) 2.4 mJ, “33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality”. Opt Lett 38:99CrossRefGoogle Scholar
  22. 22.
    Gaida C, Gebhardt M, Kadwani P, Leick L, Broeng J, Shah L, Richardson M (2013) Amplification of nanosecond pulses to megawatt peak power levels in Tm3+-doped photonic crystal fiber rod. Opt Lett 38:691CrossRefGoogle Scholar
  23. 23.
    Liu JM (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7:196CrossRefGoogle Scholar
  24. 24.
    Iwata H, Asakawa K (2008) Accumulative damage of GaAs and InP surfaces induced by multiple-laser-pulse irradiation. Jap J Appl Phys 47(4):2161–2167CrossRefGoogle Scholar
  25. 25.
    Meyer JR, Bartoli FJ, Kruer MR (1980) Optical heating in semiconductors. Phys Rev B 21(4):1559–1568CrossRefGoogle Scholar
  26. 26.
    Bristow AD, Rotenberg N, van Driel HM (2007) Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Appl Phys Lett 90:191104CrossRefGoogle Scholar
  27. 27.
    Hurlbut WC, Lee Y-S, Vodopyanov KL, Kuo PS, Feyer MM (2006) Multi-photon absorption and nonlinear refraction of GaAs in the mid-infrared. Opt Lett 32:668CrossRefGoogle Scholar
  28. 28.
    Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Physica 34(1):149–154CrossRefGoogle Scholar
  29. 29.
    Jellison GE, Burke HH (1986) The temperature dependence of the refractive index of silicon at elevated temperatures at several laser wavelengths. J Appl Phys 60:841–843CrossRefGoogle Scholar
  30. 30.
    Klotzbach U, Mälzer S, Kuntze T, Panzner M, Dötschel M, Sonntag F, Beyer E (2004) Influence of gas on cutting silicon with solid state laser. Proc SPIE 5339:488–493CrossRefGoogle Scholar
  31. 31.
    Kruusing A (2010) Handbook of liquids-assisted laser processing. ElsevierGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Ilya Mingareev
    • 1
    • 2
  • Nils Gehlich
    • 1
    • 2
  • Tobias Bonhoff
    • 1
    • 2
  • Ali Abdulfattah
    • 1
  • Alex M. Sincore
    • 1
  • Pankaj Kadwani
    • 1
  • Lawrence Shah
    • 1
  • Martin Richardson
    • 1
  1. 1.Townes Laser Institute, CREOL, College of Optics and PhotonicsUniversity of Central FloridaOrlandoUSA
  2. 2.Fraunhofer Institute for Laser TechnologyAachenGermany

Personalised recommendations