The influence of cutting forces on surface roughness in the milling of curved hardened steel surfaces


The milling of dies and molds involves the machining of complex shapes from hardened steel. To allow deep cavities to be manufactured, milling cutters are usually long with a small diameter. Because of this and because of the cutting forces involved, they have a tendency to vibrate. In finishing operations, vibration is more critical as it can damage the surface quality of the die or mold, affecting end-product quality. Determining the components of the cutting forces may therefore help choose milling parameters that reduce surface roughness. In light of this, the present work seeks to provide a better understanding of the influence of milling parameters on cutting forces and surface finish when milling dies and molds. Milling tests were performed to investigate the effects of cutting strategy, lead angle and tool overhang (input variables) on cutting force components, and workpiece surface roughness (output variables). The results were evaluated by analysis of variance. The main conclusion was that surface roughness is directly related to radial force and that the cutting conditions that provided the lowest radial load (an upward strategy with a lead angle of 0°) produced the best surface roughness.

This is a preview of subscription content, access via your institution.


  1. 1.

    Elbestawi MA, Chen L, Becze CE, El-Wardany TI (1997) High-speed milling of dies and molds in their hardened state. CIRP Ann - Manuf Technol 46:57–62. doi:10.1016/S0007-8506(07)60775-6

    Article  Google Scholar 

  2. 2.

    Becze CE, Clayton P, Chen L, El-Wardany TI, Elbestawi MA (2000) High-speed five-axis milling of hardened tool steel. Int J Mach Tool Manuf 40:869–885. doi:10.1016/S0890-6955(99)00092-9

    Article  Google Scholar 

  3. 3.

    Urbanski JP, Koshy P, Dewes RC, Aspinwall DK (2000) High speed machining of moulds and dies for net shape manufacture. Mater Des 21:395–402. doi:10.1016/S0261-3069(99)00092-8

    Article  Google Scholar 

  4. 4.

    Koshy P, Dewes R, Aspinwall D (2002) High speed end milling of hardened AISI D2 tool steel (∼58 HRC). J Mater Process Technol 127:266–273. doi:10.1016/S0924-0136(02)00155-3

    Article  Google Scholar 

  5. 5.

    Altan T, Lilly B, Yen YC, Altan T (2001) Manufacturing of dies and molds. CIRP Ann - Manuf Technol 50:404–422. doi:10.1016/S0007-8506(07)62988-6

    Article  Google Scholar 

  6. 6.

    Quinsat Y, Lavernhe S, Lartigue C (2011) Characterization of 3D surface topography in 5-axis milling. Wear 271:590–595. doi:10.1016/j.wear.2010.05.014

    Article  Google Scholar 

  7. 7.

    Benardos PG, Vosniakos G-C (2003) Predicting surface roughness in machining: a review. Int J Mach Tool Manuf 43:833–844. doi:10.1016/S0890-6955(03)00059-2

    Article  Google Scholar 

  8. 8.

    Lu C (2008) Study on prediction of surface quality in machining process. J Mater Process Technol 205:439–450. doi:10.1016/j.jmatprotec.2007.11.270

    Article  Google Scholar 

  9. 9.

    Stephenson DA, Agapiou JS (2006) Metal cutting theory and practice, 2nd edn. CRC Taylor & Francis, Boca Raton

    Google Scholar 

  10. 10.

    Fallböhmer P, Rodrı́guez CA, Özel T, Altan T (2000) High-speed machining of cast iron and alloy steels for die and mold manufacturing. J Mater Process Technol 98:104–115. doi:10.1016/S0924-0136(99)00311-8

    Article  Google Scholar 

  11. 11.

    Omar OEEK, El-Wardany T, Ng E, Elbestawi MA (2007) An improved cutting force and surface topography prediction model in end milling. Int J Mach Tool Manuf 47:1263–1275. doi:10.1016/j.ijmachtools.2006.08.021

    Article  Google Scholar 

  12. 12.

    Lamikiz A, López de Lacalle LN, Sánchez JA, Salgado MA (2004) Cutting force estimation in sculptured surface milling. Int J Mach Tool Manuf 44:1511–1526. doi:10.1016/j.ijmachtools.2004.05.004

    Article  Google Scholar 

  13. 13.

    Oliveira AJ, Diniz AE (2009) Tool life and tool wear in the semi-finish milling of inclined surfaces. J Mater Process Technol 209:5448–5455. doi:10.1016/j.jmatprotec.2009.04.022

    Article  Google Scholar 

  14. 14.

    Kecelj B, Kopač J, Kampuš Z, Kuzman K (2004) Speciality of HSC in manufacturing of forging dies. J Mater Process Technol 157–158:536–542. doi:10.1016/j.jmatprotec.2004.07.112

    Article  Google Scholar 

  15. 15.

    Schulz H, Hock S (1995) High-speed milling of dies and moulds—cutting conditions and technology. CIRP Ann - Manuf Technol 44:35–38. doi:10.1016/S0007-8506(07)62270-7

    Article  Google Scholar 

  16. 16.

    Ozturk E, Tunc LT, Budak E (2009) Investigation of lead and tilt angle effects in 5-axis ball-end milling processes. Int J Mach Tool Manuf 49:1053–1062. doi:10.1016/j.ijmachtools.2009.07.013

    Article  Google Scholar 

  17. 17.

    Baptista R, Antune Simões J (2000) Three and five axes milling of sculptured surfaces. J Mater Process Technol 103:398–403. doi:10.1016/S0924-0136(99)00479-3

    Article  Google Scholar 

  18. 18.

    Kull HN, Diniz AE, Pederiva R (2014) Correlating tool life and workpiece surface roughness with tool stiffness in the milling of Ti-6Al-4V alloy with toroidal tool. Int J Adv Manuf Technol 75:139–152. doi:10.1007/s00170-014-6144-5

    Article  Google Scholar 

  19. 19.

    Diniz AE, Marcondes FC, Coppini NL (2008) Tecnologia da usinagem dos materiais. Artliber, São Paulo (in Portuguese)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Anselmo Eduardo Diniz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kull Neto, H., Diniz, A.E. & Pederiva, R. The influence of cutting forces on surface roughness in the milling of curved hardened steel surfaces. Int J Adv Manuf Technol 84, 1209–1218 (2016).

Download citation


  • Milling of dies and molds
  • Surface roughness
  • Tool vibration
  • Hardened steel