Skip to main content

Advertisement

Log in

Cutting process-based optimization model of machining feature for cloud manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Cloud manufacturing (CMfg), as a new service-oriented manufacturing paradigm, has experienced rapid development and has been paid wide attention all over the world in recent years. In order to realize the full-scale sharing, free circulation and transaction, and on-demand use of manufacturing resources and capabilities with making use of different kinds of cloud manufacturing service platforms in modern manufacturing enterprises, there are plenty of works that should be done; how to provide high-quality manufacturing service for consumers in cloud manufacturing system is a crucial issue. This paper presents the optimization approach of cutting process based on the analysis of the key factors of cutting process, e.g., surface integrity, tool failure, chip control, and cutting stability. Within this approach, the machining methods are determined first according to the machining features and the machining requirements. Then, the optimization model outputs the cutting tools, cutting parameters, and conditions under the boundary condition linking the user databases, cutting tool database, and machining condition database. Here, the databases related to cutting quality are utilized by the optimization algorithms, e.g., genetic algorithms (GA) and ant colony optimization. A cutting parameter optimization is as an example shown by a GA approach. Finally, a prototype of the system is developed to implement the optimization approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tao F, Cheng Y, Zhang L, Nee AYC (2015) Advanced manufacturing systems: socialization characteristics and trends. J Int Manuf:1-16. doi:10.1007/s10845-015-1042-8

  2. Wang L (2013) Machine availability monitoring and machining process planning towards cloud manufacturing. CIRP J Manuf Sci Technol 6(4):263–273. doi:10.1016/j.cirpj.2013.07.001

    Article  Google Scholar 

  3. Boyd D, Crawford K (2011) Six provocations for Big Data. Social Science Electronic Publishing, New York

    Google Scholar 

  4. Li J, Tao F, Cheng Y, Zhao L (2015) Big Data in product lifecycle management. Int J Adv Manuf Technol:1-18. doi:10.1007/s00170-015-7151-x

  5. Howe D, Costanzo M, Fey P, Gojobori T, Hannick L, Hide W, Hill DP, Kania R, Schaeffer M, St Pierre S, Twigger S, White O, Yon Rhee S (2008) Big data: the future of biocuration. Nature 455(7209):47–50

    Article  Google Scholar 

  6. Yang Haicheng QG (2004) Research on the developing trends of manufacturing informatization technology. China Mech Eng 15(19):1693–1712

    Google Scholar 

  7. Haicheng Y (2003) Research and development on key technologies of manufacturing informatization. Chinese Manuf Inf 6(1):4–7

    Google Scholar 

  8. Lopez-Ortega O (2002) Design and implementation of an open manufacturing information system to enhance data sharing and exchanging among applications. Industrial Electronics, 2002 ISIE 2002 Proceedings of the 2002 I.E. International Symposium on 1:245-253 vol.241. doi:10.1109/ISIE.2002.1026073

  9. Ren L, Zhang L, Wang L, Tao F, Chai X (2014) Cloud manufacturing: key characteristics and applications. Int J Comp Integr Manuf: 1-15. doi:10.1080/0951192X.2014.902105

  10. Zhang L, Luo Y, Tao F, Li BH, Ren L, Zhang X, Guo H, Cheng Y, Hu A, Liu Y (2012) Cloud manufacturing: a new manufacturing paradigm. Enterp Inf Syst 8(2):167–187. doi:10.1080/17517575.2012.683812

    Article  Google Scholar 

  11. Zhang Lin LY, Wenhui F, Fei T, Lei R (2011) Analyses of cloud manufacturing and related advanced manufacturing models. Comput Integr Manuf Syst 03:458–468

    Google Scholar 

  12. Tao Fei ZL, Guo H, Luo Y, Lei R (2011) Typical characteristics of cloud manufacturing and several key issues of cloud service composition. Comput Integr Manuf Syst 03:477–486

    Google Scholar 

  13. Tao F, Zhang L, Venkatesh VC, Luo Y, Cheng Y (2011) Cloud manufacturing: a computing and service-oriented manufacturing model. Proc Inst Mech Eng B J Eng Manuf. doi:10.1177/0954405411405575

    Google Scholar 

  14. Li Bohu ZL, Xudong RLC, Fei T, Luo Y, Wang Y, Chao Y, Gang H, Xinpei Z (2011) Further discussion on cloud manufacturing. Comput Integr Manuf Syst 03(449–457)

  15. Li Bohu ZL, Wang S, Tao F, Cao J, Jiang X, Song X, Chai X (2010) Cloud manufacturing: a new service-oriented networked manufacturing model. Comput Integr Manuf Syst 16(1):1–7

    Google Scholar 

  16. Lin Q, Xia K, Wang L, Gao L (2013) Research progress of cloud manufacturing in China: a literature survey. In: ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, pp V002T002A006-V002T002A006

  17. Wu D, Rosen DW, Wang L, Schaefer D (2014) Cloud-based manufacturing: old wine in new bottles? Procedia CIRP 17:94–99. doi:10.1016/j.procir.2014.01.035

    Article  Google Scholar 

  18. Wu D, Greer MJ, Rosen DW, Schaefer D (2013) Cloud manufacturing: strategic vision and state-of-the-art. J Manuf Syst 32(4):564–579

    Article  Google Scholar 

  19. Tao F, Zhang L, Liu Y, Cheng Y, Wang L, Xu X (2015) Manufacturing service management in cloud manufacturing: overview and future research directions. J Manuf Sci Eng 137(4):040912. doi:10.1115/1.4030510

    Article  Google Scholar 

  20. Fei T, Ying Z, Da Li X, Lin Z (2014) IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Trans Ind Inf 10(2):1547–1557. doi:10.1109/TII.2014.2306397

    Article  Google Scholar 

  21. Fei T, Yuanjun L, Lida X, Lin Z (2013) FC-PACO-RM: a parallel method for service composition optimal-selection in cloud manufacturing system. IEEE Trans Ind Inf 9(4):2023–2033. doi:10.1109/TII.2012.2232936

    Article  Google Scholar 

  22. Um J, Choi Y-C, Stroud I (2014) Factory planning system considering energy-efficient process under cloud manufacturing. Procedia CIRP 17:553–558. doi:10.1016/j.procir.2014.01.084

    Article  Google Scholar 

  23. Okemwa P, Yan rong N, Jun qi Y (2001) Features based multi-agent distributed process planning methods. J Shang Hai Jiao Tong Univ 01:153–156

    Google Scholar 

  24. GaoLiang LX (2011) Current researches on integrated process planning and scheduling. China Mech Eng 08:1001–1007

    Google Scholar 

  25. Lv Chengping QL (2014) Current status and developing trend of process planning and job shop scheduling. Comput Integr Manuf Syst 02:290–300

    Google Scholar 

  26. Bensmaine A, Dahane M, Benyoucef L (2014) A new heuristic for integrated process planning and scheduling in reconfigurable manufacturing systems. Int J Prod Res 52(12):3583–3594. doi:10.1080/00207543.2013.878056

    Article  Google Scholar 

  27. Mohapatra P, Nayak A, Kumar SK, Tiwari MK (2014) Multi-objective process planning and scheduling using controlled elitist non-dominated sorting genetic algorithm. Int J Prod Res 53(6):1712–1735. doi:10.1080/00207543.2014.957872

    Article  Google Scholar 

  28. Chen M, Cao C (2015) Robust optimization for a multi-product integrated problem of planning and scheduling under products uncertainty. J Appl Math Phys 03(01):16–24. doi:10.4236/jamp.2015.31003

    Article  Google Scholar 

  29. Li Z, Ierapetritou MG (2010) Production planning and scheduling integration through augmented Lagrangian optimization. Comput Chem Eng 34(6):996–1006. doi:10.1016/j.compchemeng.2009.11.016

    Article  Google Scholar 

  30. Karpat Y, Özel T (2006) Predictive analytical and thermal modeling of orthogonal cutting process—part II: effect of tool flank wear on tool forces, stresses, and temperature distributions. J Manuf Sci Eng 128(2):445–453

    Article  Google Scholar 

  31. Karpat Y, Özel T (2006) Predictive analytical and thermal modeling of orthogonal cutting process—part I: predictions of tool forces, stresses, and temperature distributions. J Manuf Sci Eng 128(2):435–444

    Article  Google Scholar 

  32. Guo Mingzhe WQ, Yongli Z, Wang W (2010) Research and development on cutting database based on technological process. New Technol New Process 08:48–51

    Google Scholar 

  33. Tao F, Hu Y, Zhao D, Zhou Z, Zhang H, Lei Z (2008) Study on manufacturing grid resource service QoS modeling and evaluation. Int J Adv Manuf Technol 41(9-10):1034–1042. doi:10.1007/s00170-008-1534-1

    Article  Google Scholar 

  34. Tao F, Hu Y, Zhao D, Zhou Z (2008) Study on resource service match and search in manufacturing grid system. Int J Adv Manuf Technol 43(3-4):379–399. doi:10.1007/s00170-008-1699-7

    Article  Google Scholar 

  35. Tao F, Hu YF, Zhou ZD (2007) Study on manufacturing grid & its resource service optimal-selection system. Int J Adv Manuf Technol 37(9-10):1022–1041. doi:10.1007/s00170-007-1033-9

    Article  Google Scholar 

  36. Genghuang H (2013) Research on both the high-efficiency cutting of large shell and the tool technology. Harbin University of Science and Technology, Harbin

    Google Scholar 

  37. Suh CS, Khurjekar PP, Yang B (2002) Characterisation and identification of dynamic instability in milling operation. Mech Syst Signal Process 16(5):853–872. doi:10.1006/mssp.2002.1497

    Article  Google Scholar 

  38. Smith S, Winfough WR, Borchers HJ (2000) Power and stability limits in milling. CIRP Ann Manuf Technol 49(1):309–312. doi:10.1016/S0007-8506(07)62952-7

    Article  Google Scholar 

  39. Pratt JR, Nayfeh AH (1999) Design and modeling for chatter control. Nonlinear Dyn 19(1):49–69. doi:10.1023/A:1008322520352

    Article  MATH  Google Scholar 

  40. Tsai J-T, Liu T-K, Ho W-H, Chou J-H (2008) An improved genetic algorithm for job-shop scheduling problems using Taguchi-based crossover. Int J Adv Manuf Technol 38(9-10):987–994. doi:10.1007/s00170-007-1142-5

    Article  Google Scholar 

  41. Chen Y-W, Lu Y-Z, Yang G-K (2008) Hybrid evolutionary algorithm with marriage of genetic algorithm and extremal optimization for production scheduling. Int J Adv Manuf Technol 36(9-10):959–968. doi:10.1007/s00170-006-0904-9

    Article  Google Scholar 

  42. Xu X-d, C-x L (2007) Research on immune genetic algorithm for solving the job-shop scheduling problem. Int J Adv Manuf Technol 34(7-8):783–789. doi:10.1007/s00170-006-0652-x

    Article  Google Scholar 

  43. Jerald J, Asokan P, Saravanan R, Delphin Carolina Rani A (2006) Simultaneous scheduling of parts and automated guided vehicles in an FMS environment using adaptive genetic algorithm. Int J Adv Manuf Technol 29(5):584–589. doi:10.1007/s00170-005-2529-9

    Article  Google Scholar 

  44. Wei-Neng C, Jun Z (2009) An ant colony optimization approach to a grid workflow scheduling problem with various QoS requirements. IEEE Trans Syst Man Cybern Part C Appl Rev 39(1):29–43. doi:10.1109/TSMCC.2008.2001722

    Article  Google Scholar 

  45. Gang W, Wenrui G, DeRenzi B, Kastner R (2007) Ant colony optimizations for resource- and timing-constrained operation scheduling. IEEE Trans Comput Aided Des Integr Circuits and Syst 26(6):1010–1029. doi:10.1109/TCAD.2006.885829

    Article  Google Scholar 

  46. Shukla S, Son Y, Tiwari MK (2008) Fuzzy-based adaptive sample-sort simulated annealing for resource-constrained project scheduling. Int J Adv Manuf Technol 36(9-10):982–995. doi:10.1007/s00170-006-0907-6

    Article  Google Scholar 

  47. Fei T, Dongming Z, Yefa H, Zude Z (2008) Resource service composition and its optimal-selection based on particle swarm optimization in manufacturing grid system. IEEE Trans Ind Inf 4(4):315–327. doi:10.1109/TII.2008.2009533

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Huo, T. & Ge, J. Cutting process-based optimization model of machining feature for cloud manufacturing. Int J Adv Manuf Technol 84, 327–334 (2016). https://doi.org/10.1007/s00170-015-7800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7800-0

Keywords

Navigation