The impact of big data on world-class sustainable manufacturing

Abstract

Big data (BD) has attracted increasing attention from both academics and practitioners. This paper aims at illustrating the role of big data analytics in supporting world-class sustainable manufacturing (WCSM). Using an extensive literature review to identify different factors that enable the achievement of WCSM through BD and 405 usable responses from senior managers gathered through social networking sites (SNS), we propose a conceptual framework using constructs obtained using reduction of gathered data that summarizes this role; test this framework using data which is heterogeneous, diverse, voluminous, and possess high velocity; and highlight the importance for academia and practice. Finally, we conclude our research findings and further outlined future research directions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Fawcett SE, Waller MA (2014) Supply chain game changers—mega, nano, and virtual trends—and forces that impede supply chain design (ie, building a winning team). J Bus Logist 35(3):157–164

    Article  Google Scholar 

  2. 2.

    Accenture (2013) The role of big data and analytics in the developing world. Report, available at: http://www.accenture.com/SiteCollectionDocuments/PDF/Accenture-ADP-Role-Big-Data-And-Analytics-Developing-World.pdf. Accessed on 8 June 2015

  3. 3.

    Wamba SF, Akter S, Edwards A, Chopin G, Gnanzou D (2015) How ‘big data’ can make big impact: findings from a systematic review and a longitudinal case study. Int J Prod Econ. doi:10.1016/j.ijpe.2014.12.031

    Google Scholar 

  4. 4.

    Perrey J, Spillecke D, Umblijs A (2013) Smart analytics: how marketing drives short-term and long-term growth. McKinsey Quarterly, July, 2013 (http://www.mckinsey.com/client_service/marketing_and_sales/latest_thinking/big_data_analytics_and_the_future_of_marketing_and_sales). Accessed on 14 Dec 2014

  5. 5.

    Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers AH (2011) Big data: the next frontier for innovation, competition, and productivity

  6. 6.

    McAfee A, Brynjolfsson E, Davenport TH, Patil DJ, Barton D (2012) Big data: the management revolution. Harv Bus Rev 90(10):61–67

    Google Scholar 

  7. 7.

    Chen H, Chiang RH, Storey VC (2012) Business intelligence and analytics: from big data to big impact. MIS Q 36(4):1165–1188

    Google Scholar 

  8. 8.

    Hayes RH, Wheelwright SC (1984) Restoring our competitive edge: competing through manufacturing, vol 8. Wiley, New York

    Google Scholar 

  9. 9.

    Flynn BB, Schroeder RG, Flynn EJ (1999) World class manufacturing: an investigation of Hayes and Wheelwright’s foundation. J Oper Manag 17(3):249–269

    Article  Google Scholar 

  10. 10.

    Keeso A (2014) Big data and environmental sustainability: a conversation starter. Smith School Working paper series.Working paper 14–04 (http://www.smithschool.ox.ac.uk/library/working-papers/workingpaper%2014-04.pdf). Accessed 7 May 2015

  11. 11.

    Fan J, Han F, Liu H (2014) Challenges of big data analysis. Nat Sci Rev 1(2):293–314

    Article  Google Scholar 

  12. 12.

    Bughin J, Chui M, Manyika J (2010) Clouds, big data, and smart assets: ten tech-enabled business trends to watch. McKinsey Q 56(1):75–86

    Google Scholar 

  13. 13.

    Mayer-Schönberger V, Cukier K (2013) Big data: a revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt, New York

    Google Scholar 

  14. 14.

    Dijcks J-P (2013) Oracle: big data for the enterprise. Redwood Shores, Oracle

    Google Scholar 

  15. 15.

    White M (2012) Digital workplaces: vision and reality. Bus Inf Rev 29(4):205–214

    Article  Google Scholar 

  16. 16.

    Forrester (2012) The big deal about big data for customer engagement business: leaders must lead big data initiatives to derive value. Available: http://www.forrester.com/The+Big+Deal+About+Big+Data+For+Customer+Engagement/fulltext/-/E-RES72241. Accessed 5 June 2015

  17. 17.

    Boyd D, Crawford K (2012) Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon. Inf Commun Soc 15(5):662–679

    Article  Google Scholar 

  18. 18.

    Mark AB, Laney D (2012) The importance of ‘big data’: a definition. Gartner, Jun, 21

  19. 19.

    McGahan A (2013) Unlocking the big promise of big data. Totman Manag 6(1):53–57

    Google Scholar 

  20. 20.

    Sun EW, Chen YT, Yu MT (2015) Generalized optimal wavelet decomposing algorithm for big financial data. Int J Prod Econ. doi:10.1016/j.ijpe.2014.12.033

    Google Scholar 

  21. 21.

    Gandomi A, Haider M (2015) Beyond the hype: big data concepts, methods, and analytics. Int J Inf Manag 35(2):137–144

    Article  Google Scholar 

  22. 22.

    Davenport TH (2012) The human side of Big Data and high-performance analytics. International Institute for Analytics. pp 1–13

  23. 23.

    Jacobs A (2009) The pathologies of big data. Commun ACM 52(8):36

    Article  Google Scholar 

  24. 24.

    Waller MA, Fawcett SE (2013) Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. J Bus Logist 34(2):77–84

    Article  Google Scholar 

  25. 25.

    Bi Z, Cochran D (2014) Big data analytics with applications. J Manag Anal 1(4):249–265

    Google Scholar 

  26. 26.

    Gong Q, Yang Y, Wang S (2014) Information and decision-making delays in MRP, KANBAN, and CONWIP. Int J Prod Econ 156:208–213

    Article  Google Scholar 

  27. 27.

    Hazen BT, Boone CA, Ezell JD, Jones-Farmer LA (2014) Data quality for data science, predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research and applications. Int J Prod Econ 154:72–80

    Article  Google Scholar 

  28. 28.

    Chae BK (2015) Insights from hashtag #supplychain and Twitter Analytics: considering Twitter and Twitter data for supply chain practice and research. Int J Prod Econ 165:247–259

    Article  Google Scholar 

  29. 29.

    Li J, Tao F, Cheng Y, Zhao L (2015) Big Data in product lifecycle management. Int J Adv Manuf Technol. 1-18.

  30. 30.

    Hall RW (1987) Attaining manufacturing excellence: just-in-time, total quality, total people involvement. Dow Jones-Irwin, Homewood

    Google Scholar 

  31. 31.

    Gunn TG (1987) Manufacturing for competitive advantage: becoming a world class manufacturer. Ballinger publishing company, Boston

    Google Scholar 

  32. 32.

    Steudel HJ, Desruelle P (1992) Manufacturing in the ‘90s: how to become a mean, lean world-class competitor. Van Nostrand Reinhold Company

  33. 33.

    Roth AV, Giffi CA, Seal GM (1992) Operating strategies for the 1990s: elements comprising world-class manufacturing. In: Voss C (ed) Manufacturing strategy. Process and Content, Chapman & Hall, London, pp 133–165

    Google Scholar 

  34. 34.

    Flynn BB, Schroeder RG, Flynn EJ, Sakakibara S, Bates KA (1997) World-class manufacturing project: overview and selected results. Int Oper Prod Manag 17(7):671–685

    Article  Google Scholar 

  35. 35.

    Brown S, Squire B, Blackmon K (2007) The contribution of manufacturing strategy involvement and alignment to world-class manufacturing performance. Int J Oper Prod Manag 27(3):282–302

    Article  Google Scholar 

  36. 36.

    Sharma M, Kodali R (2008) Development of a framework for manufacturing excellence. Meas Bus Excell 12(4):50–66

    Article  Google Scholar 

  37. 37.

    Garetti M, Taisch M (2012) Sustainable manufacturing: trends and research challenges. Prod Plan Control 23(2-3):83–104

    Article  Google Scholar 

  38. 38.

    Jovane F, Yoshikawa H, Alting L, Boër CR, Westkamper E, Williams D, Paci AM (2008) The incoming global technological and industrial revolution towards competitive sustainable manufacturing. CIRP Ann Manuf Technol 57(2):641–659

    Article  Google Scholar 

  39. 39.

    Kaebernick H, Kara S, Sun M (2003) Sustainable product development and manufacturing by considering environmental requirements. Robot Comput Integr Manuf 19(6):461–468

    Article  Google Scholar 

  40. 40.

    Kumaraguru S, Rachuri S, Lechevalier D (2014) Faceted classification of manufacturing processes for sustainability performance evaluation. Int J Adv Manuf Technol 75(9-12):1309–1320

    Article  Google Scholar 

  41. 41.

    Le Bourhis F, Kerbrat O, Hascoët JY, Mognol P (2013) Sustainable manufacturing: evaluation and modeling of environmental impacts in additive manufacturing. Int J Adv Manuf Technol 69(9-12):1927–1939

    Article  Google Scholar 

  42. 42.

    Young P, Byrne IG, Cotterell M (1997) Manufacturing and the environment. Int J Adv Manuf Technol 13(7):488–493

    Article  Google Scholar 

  43. 43.

    Azzone G, Noci G (1998) Identifying effective PMSs for the deployment of “green” manufacturing strategies. Int J Oper Prod Manag 18(4):308–335

    Article  Google Scholar 

  44. 44.

    Gunasekaran A, Spalanzani A (2012) “Sustainable of manufacturing services: investigation for research and applications”. Int J Prod Econ 140(1):35–47

    Article  Google Scholar 

  45. 45.

    Noci G (1997) Designing ‘green’ vendor rating systems for the assessment of a supplier's environmental performance. Eur J Purch Supply Manag 3(2):103–114

    Article  Google Scholar 

  46. 46.

    Sánchez AM, Pérez MP (2001) Lean indicators and manufacturing strategies. Int J Oper Prod Manag 21(11):1433–1452

    Article  Google Scholar 

  47. 47.

    Flammer C (2013) Corporate social responsibility and shareholder reaction: the environmental awareness of investors. Acad Manag J 56(3):758–781

    Article  Google Scholar 

  48. 48.

    Carter CR, Rogers DS (2008) A framework of sustainable supply chain management: moving toward new theory. Int J Phys Distrib Logist Manag 38(5):360–387

    Article  Google Scholar 

  49. 49.

    Kannegiesser M, Günther HO (2014) Sustainable development of global supply chains—part 1: sustainability optimization framework. Flex Serv Manuf J 26(1-2):24–47

    Article  Google Scholar 

  50. 50.

    Rusinko CA (2007) Green Manufacturing: an evaluation of environmentally sustainable manufacturing practices and their impact on competitive outcomes. IEEE Trans Eng Manag 54(3):445–454

    Article  Google Scholar 

  51. 51.

    Molamohamadi Z, Ismail N (2013) Developing a new scheme for sustainable manufacturing. Int J Mater Mech Manuf 1(1):1–5

    Google Scholar 

  52. 52.

    Prabhu VV, Jeon HW, Taisch M (2012) Modeling green factory physics—an analytical approach. In: Automation Science and Engineering (CASE), 2012 IEEE International Conference on (pp. 46-51). IEEE

  53. 53.

    Gunasekaran A, Irani Z, Papadopoulos T (2013) Modelling and analysis of sustainable operations management: certain investigations for research and applications. J Oper Res Soc

  54. 54.

    Garbie IH (2013) DFSME: design for sustainable manufacturing enterprises (an economic viewpoint). Int J Prod Res 51(2):479–503

    Article  Google Scholar 

  55. 55.

    Garbie IH (2014) An analytical technique to model and assess sustainable development index in manufacturing enterprises. Int J Prod Res 52(16):4876–4915

    Article  Google Scholar 

  56. 56.

    Dubey R, Gunasekaran A, Chakrabarty A (2015) World-class sustainable manufacturing: framework and a performance measurement system. Int J Prod Res. doi:10.1080/00207543.2015.1012603

    Google Scholar 

  57. 57.

    Despeisse M, Ball PD, Evans S, Levers A (2012) Industrial ecology at factory level—a conceptual model. J Clean Prod 31(3–4):30–39

    Article  Google Scholar 

  58. 58.

    Opresnk D, Taisch M (2015) The value of Big Data in servitization. Int J Prod Econ 165:174–184

    Article  Google Scholar 

  59. 59.

    Siaminwe L, Chinsembu K, Syakalima M (2005) Policy and operational constraints for the implementation of cleaner production. J Clean Prod 13:1037–1047

    Article  Google Scholar 

  60. 60.

    Berkel V (2007) Cleaner production and eco-efficiency in Australian small firms. Int J Environ Technol Manag 7(5/6):672–693

    Article  Google Scholar 

  61. 61.

    Deif AM (2011) A system model for green manufacturing. Int J Clean Prod 19(14):1553–1559

    Article  Google Scholar 

  62. 62.

    Law KM, Gunasekaran A (2012) Sustainability development in high-tech manufacturing firms in Hong Kong: motivators and readiness. Int J Prod Econ 137(1):116–125

    Article  Google Scholar 

  63. 63.

    Singh A, Singh B, Dhingra AK (2012) Drivers and barriers of green manufacturing practices: a survey of Indian industries. Int J Eng Sci 1(1):5–19

    Google Scholar 

  64. 64.

    Dües CM, Tan KH, Lim M (2013) Green as the new Lean: how to use Lean practices as a catalyst to greening your supply chain. J Clean Prod 40:93–100

    Article  Google Scholar 

  65. 65.

    van Hoof B, Lyon TP (2013) Cleaner production in small firms taking part in Mexico’s Sustainable Supplier Program. J Clean Prod 41:270–282

    Article  Google Scholar 

  66. 66.

    Dutta D, Bose I (2015) Managing a big data project: the case of Ramco Cements limited. Int J Prod Econ. doi:10.1016/j.ijpe.2014.12.032

    Google Scholar 

  67. 67.

    Zhu Q, Sarkis J, Geng Y (2005) Green supply chain management in China: pressure, practices and performance. Int J Oper Prod Manag 25(5):449–468

    Article  Google Scholar 

  68. 68.

    Tsoulfas GT, Pappis CP (2006) Environmental principles applicable to supply chains design and operation. J Clean Prod 14(1):1593–1602

    Article  Google Scholar 

  69. 69.

    Sarkis J, Zhu Q, Lai K (2011) An organizational theoretic review of green supply chain management literature. Int J Prod Econ 130(1):1–15

    Article  Google Scholar 

  70. 70.

    Bierma TJ, Wasterstraat FL (1999) Cleaner production from chemical suppliers: understanding shared savings contracts. J Clean Prod 7(2):145–158

    Article  Google Scholar 

  71. 71.

    Vachon S, Klassen RD (2006) Green project partnership in the supply chain: the case of the package printing industry. J Clean Prod 14(6/7):661–671

    Article  Google Scholar 

  72. 72.

    Hsu CW, Hu AH (2009) Applying hazardous substance management to supplier selection using analytic network process. J Clean Prod 17(2):255–264

    Article  Google Scholar 

  73. 73.

    Bai C, Sarkis J (2010) Greener supplier development: analytical evaluation using rough set theory. J Clean Prod 17(2):255–264

    Google Scholar 

  74. 74.

    Ku CY, Chang CT, Ho HP (2010) Global supplier selection using fuzzy analytic hierarchy process and fuzzy goal programming. Qual Quant 44(4):623–640

    Article  Google Scholar 

  75. 75.

    Testa F, Iraldo F (2010) Shadows and lights of GSCM (green supply chain management): determinants and efects of these practices based on a multinational study. J Clean Prod 18(10/11):953–962

    Article  Google Scholar 

  76. 76.

    Atlas M, Florida R (1998) “Green Manufacturing.” In: R. Dorf (ed) Handbook of technology management. CRC Press

  77. 77.

    Chien MK, Shih LH (2007) An empirical study of the implementation of green supply chain management practices in the electrical and electronic industry and their relation to organizational performances. Int J Environ Sci Technol 4(3):383–394

    Google Scholar 

  78. 78.

    Hsu CW, Hu AH (2008) Green supply chain management in the electronic industry. Int J Sci Technol 5(2):205–216

    Article  Google Scholar 

  79. 79.

    Luthra S, Kumar V, Kumar S, Haleem A (2011) Barriers to implement green supply chain management in automobile industry using interpretive structural modeling technique: an Indian perspective. J Ind Eng Manag 4(2):231–257

    Google Scholar 

  80. 80.

    Jabbour CJC, Jabbour ABLDS, Govindan K, Teixeira AA, Freitas WRDS (2013) Environmental management and operational performance in automotive companies in Brazil: the role of human resource management and lean manufacturing. J Clean Prod 47:129–140

    Article  Google Scholar 

  81. 81.

    Rao P, Holt D (2005) “Do green supply chains lead to competitiveness and economic performance?”. Int J Oper Prod Manag 25(9):898–916

    Article  Google Scholar 

  82. 82.

    Seuring S, Müller M (2008) Core issues in sustainable supply chain management—a Delphi study. Bus Strateg Environ 17(8):455–466

    Article  Google Scholar 

  83. 83.

    Eltayeb T, Zailani S, Ramayah T (2011) Green supply chain initiatives among certified companies in Malaysia and environmental sustainability: investigating the outcomes. Resour Conserv Recycl 55:495–506

    Article  Google Scholar 

  84. 84.

    Baines T, Brown S, Benedettini O, Ball P (2012) Examining green production and its role within the competitive strategy of manufacturers. J Ind Eng Manag 15(1):53–87

    Google Scholar 

  85. 85.

    Pauli G (1997) Zero emissions: the ultimate goal of cleaner production. J Clean Prod 5(1/2):109–113

    Article  Google Scholar 

  86. 86.

    Murovec N, Erker RS, Prodan I (2012) Determinants of environmental investments: testing the structural model. J Clean Prod 37:265–277

    Article  Google Scholar 

  87. 87.

    Prajogo D, Chowdhury M, Yeung AC, Cheng TCE (2012) The relationship between supplier management and firm’s operational performance: a multi-dimensional perspective. Int J Prod Econ 136(1):123–130

  88. 88.

    Pereira-Moliner J, Claver-Cortes E, Molina-Azorin J, Tari J (2012) Quality management, environmental management and firm performance: direct and mediating effects in the hotel industry. J Clean Prod 37:82–92

    Article  Google Scholar 

  89. 89.

    Gavronski I, Paiva EL, Teixeira R, de Andrade MCF (2013) ISO 14001 certified plants in Brazil—taxonomy and practices. J Clean Prod 39:32–41

    Article  Google Scholar 

  90. 90.

    Mudgal RK, Shankar R, Talib P, Raj T (2010) Modelling the barriers of green supply chain practices: an Indian perspective. Int J Logist Syst Manag 7(1):81–107

    Article  Google Scholar 

  91. 91.

    Diaz-Elsayed N, Jondral A, Greinacher S, Dornfeld D, Lanza G (2013) Assessment of lean and green strategies by simulation of manufacturing systems in discrete production environments. CIRP Ann Manuf Technol 62(1):475–478

    Article  Google Scholar 

  92. 92.

    Jasiulewicz-Kaczmarek M (2013) Sustainability: orientation in maintenance management—theoretical background. In: EcoProduction and Logistics. Springer, Berlin, pp 117–134

    Google Scholar 

  93. 93.

    Farish M (2009) Plants that are green [Toyota’s lean manufacturing]. Eng Technol 4(3):68–69

    Article  Google Scholar 

  94. 94.

    Franchetti M, Bedal K, Ulloa J, Grodek S (2009) Lean and green-industrial engineering methods are natural stepping stones to green engineering. Ind Eng 41(9):24

    Google Scholar 

  95. 95.

    Hajmohammad S, Vachon S, Klassen RD, Gavronski I (2013) Lean management and supply management: their role in green practices and performance. J Clean Prod 39:312–320

    Article  Google Scholar 

  96. 96.

    Azevedo SG, Carvalho H, Cruz Machado V (2011) The influence of green practices on supply chain performance: a case study approach. Transp Res E Logist Transp Rev 47(6):850–871

    Article  Google Scholar 

  97. 97.

    Bhateja AK, Babbar R, Singh S, Sachdeva A (2012) Study of the critical factor finding’s regarding evaluation of green supply chain performance of Indian scenario for manufacturing sector. Int J Comput Eng Manag 15(1):74–80

    Google Scholar 

  98. 98.

    Seman NAA, Zakuan N, Jusoh A, Arif MSM, Saman MZM (2012) Green supply chain management: a review and research direction. Int J Manag Value Supply Chains 3(1):1–18

    Article  Google Scholar 

  99. 99.

    Whitelock VG (2012) Alignment between green supply chain management strategy and business strategy. Int J Procurement Manag 5(4):430–451

    Article  Google Scholar 

  100. 100.

    Pochampally KK, Gupta SM, Govindan K (2009) Metrics for performance measurement of a reverse/closed-loop supply chain. Int J Bus Perform Supply Chain Model 1(1):8–32

    Article  Google Scholar 

  101. 101.

    Ageron B, Gunasekaran A, Spalanzani A (2012) Sustainable supply management: an empirical study. Int J Prod Econ 140(1):168–182

    Article  Google Scholar 

  102. 102.

    Churchill GA Jr (1979) A paradigm for developing better measures of marketing constructs. J Mark Res 16(1):64–73

    MathSciNet  Article  Google Scholar 

  103. 103.

    Gerbing DW, Anderson JC (1988) An updated paradigm for scale development incorporating unidimensionality and its assessment. J Mark Res 25(2):186–192

    Article  Google Scholar 

  104. 104.

    Lomborg S, Bechmann A (2014) Using APIs for data collection on social media. Inf Soc 30(4):256–265

    Article  Google Scholar 

  105. 105.

    Hargittai E (2007) Whose space? Differences among users and non‐users of social network sites. J Comput-Mediat Commun 13(1):276–297

    Article  Google Scholar 

  106. 106.

    Berg BL, Lune H, Lune H (2004) Qualitative research methods for the social sciences, vol 5. Pearson, Boston

    Google Scholar 

  107. 107.

    Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media?. In Proceedings of the 19th international conference on World wide web (pp. 591-600). ACM

  108. 108.

    Tufekci Z (2008) Grooming, gossip, Facebook and MySpace: what can we learn about these sites from those who won’t assimilate? Inf Commun Soc 11(4):544–564

    Article  Google Scholar 

  109. 109.

    Braunscheidel MJ, Suresh NC (2009) The organizational antecedents of a firm’s supply chain agility for risk mitigation and response. J Oper Manag 27(2):119–140

    Article  Google Scholar 

  110. 110.

    Eckstein D, Goellner M, Blome C, Henke M (2015) The performance impact of supply chain agility and supply chain adaptability: the moderating effect of product complexity. Int J Prod Res. doi:10.1080/00207543.2014.970707

    Google Scholar 

  111. 111.

    Khalili A, Chen J (2007) Variable selection in finite mixture of regression models. J Am Stat Assoc 102(479):1025–1038

    MathSciNet  MATH  Article  Google Scholar 

  112. 112.

    Städler N, Bühlmann P, Van De Geer S (2010) ℓ 1-penalization for mixture regression models. Test 19(2):209–256

    MathSciNet  MATH  Article  Google Scholar 

  113. 113.

    Becker JM, Rai A, Ringle CM, Völckner F (2013) Discovering unobserved heterogeneity in structural equation models to avert validity threats. MIS Q 37(3):665–694

    Google Scholar 

  114. 114.

    Fan J, Liao Y (2014) Endogeneity in high dimensions. Ann Stat 42(3):872–917

    MathSciNet  MATH  Article  Google Scholar 

  115. 115.

    Golub GH, Van Loan CF (2012) Matrix computations (Vol. 3). JHU Press

  116. 116.

    Chen IJ, Paulraj A (2004) Towards a theory of supply chain management: the constructs and measurements. J Oper Manag 22(2):119–150

    Article  Google Scholar 

  117. 117.

    Cohen J, Cohen P, West SG, Aiken LS (2013) Applied multiple regression/correlation analysis for the behavioral sciences, 3rd edn. Erlbaum, Hillsdale

    Google Scholar 

  118. 118.

    Curran PJ, West SG, Finch JF (1996) The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychol Methods 1(1):16–29

    Article  Google Scholar 

  119. 119.

    Hair JF, Anderson RE, Tatham RL, Black WC (1998) Multivariate data analysis. Prentice-Hall, Upper Saddle River

    Google Scholar 

  120. 120.

    Fornell C, Larcker DF (1981) Structural equation models with unobservable variables and measurement error: algebra and statistics. J Mark Res 18(1):39–50

    Article  Google Scholar 

  121. 121.

    Tenenhaus M, Vinzi VE, Chatelin YM, Lauro C (2005) PLS path modeling. Comput Stat Data Anal 48(1):159–205

    MathSciNet  MATH  Article  Google Scholar 

  122. 122.

    Wetzels M, Odekerken-Schröder G, Van Oppen C (2009) Using PLS path modeling for assessing hierarchical construct models: guidelines and empirical illustration. MIS Q 33(1):177–195

    Google Scholar 

  123. 123.

    Whetten DA (1989) What constitutes a theoretical contribution? Acad Manag Rev 14(4):490–495

    Article  Google Scholar 

  124. 124.

    Agarwal R, Dhar V (2014) Editorial—big data, data science, and analytics: the opportunity and challenge for is research. Inf Syst Res 25(3):443–448

  125. 125.

    Bhatt GD, Grover V (2005) Types of information technology capabilities and their role in competitive advantage: an empirical study. Journal of Management Information Systems, 22(2):253–277

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Angappa Gunasekaran.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dubey, R., Gunasekaran, A., Childe, S.J. et al. The impact of big data on world-class sustainable manufacturing. Int J Adv Manuf Technol 84, 631–645 (2016). https://doi.org/10.1007/s00170-015-7674-1

Download citation

Keywords

  • Big data
  • World class sustainable manufacturing
  • Social networking site
  • Confirmatory factor analysis
  • Sustainable manufacturing