Advertisement

A finite element model of thermal evolution in laser micro sintering

  • Jie Yin
  • Haihong ZhuEmail author
  • Linda Ke
  • Panpan Hu
  • Chongwen He
  • Hu Zhang
  • Xiaoyan Zeng
ORIGINAL ARTICLE

Abstract

Laser micro sintering (LMS) is a promising technique for micro-additive manufacturing. During LMS of metallic powder, the material property variation and the heat input energy profile are important to understand physical phenomena involved. This paper presents a finite element temperature distribution profile in LMS of nickel powder on 304 stainless steel substrate. The simulation considered the transition of powder-to-dense sub-model which involves effective thermal conductivity, volumetric enthalpy, and absorptance change; and a moving volumetric Gaussian distribution heat source sub-model. It is found that, for a specified cross section, the mechanism of preheating the nickel powder changes for the heat source from previous laser-irradiated substrate region to molten nickel as the laser beam approaches, while the center of molten pool slice is slightly shifted toward the reverse direction of laser scanning when the laser moves away due to the thermal accumulation effect. Simulated sintered widths showed very good agreement with experimental measurement, and relative prediction errors are below 16 % within the process window.

Keywords

Additive manufacturing Laser micro sintering Numerical simulation Temperature distribution Pre- and post- heating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Regenfuss P, Hartwig L, Klotzer S, Ebert R, Brabant T, Petsch T, Exner H (2005) Industrial freeform generation of microtools by laser micro sintering. Rapid Prototyping J 11(1):18–25. doi: 10.1108/13552540510573356 CrossRefGoogle Scholar
  2. 2.
    Regenfuss P, Streek A, Hartwig L, Klotzer S, Brabant T, Horn M, Ebert R, Exner H (2007) Principles of laser micro sintering. Rapid Prototyping J 13(4):204–212. doi: 10.1108/13552540710776151 CrossRefGoogle Scholar
  3. 3.
    Zhu H, Ke L, Lei W, Dai C, Chen B (2013) Effect of the Q-switch parameters on the sintering behavior of laser micro sintering Cu-based metal powder using Q-switched Nd:YAG laser. Rapid Prototyping J 19(1):44–50. doi: 10.1108/13552541311292727 CrossRefGoogle Scholar
  4. 4.
    Ke L, Zhu H, Yin J, Wang X (2014) Effect of peak laser power on laser micro sintering of nickel powder by pulsed Nd:YAG laser. Rapid Prototyping J 20(4):328–335. doi: 10.1108/RPJ-09-2012-0084 CrossRefGoogle Scholar
  5. 5.
    Dai K, Shaw L (2004) Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders. Acta Mater 52(1):69–80. doi: 10.1016/j.actamat.2003.08.028 CrossRefGoogle Scholar
  6. 6.
    Kolossov S, Boillat E, Glardon R, Fischer P, Locher M, 2004 3D FE simulation for temperature evolution in the selective laser sintering process. Int J Mach Tools Manuf 44(2–3):117–123. doi: 10.1016/j.ijmachtools.2003.10.019
  7. 7.
    Roberts IA, Wang CJ, Esterlein R, Stanford M, Mynors DJ (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 49(12–13):916–923. doi: 10.1016/j.ijmachtools.2009.07.004 CrossRefGoogle Scholar
  8. 8.
    Dong L, Makradi A, Ahzi S, Remond Y (2009) Three-dimensional transient finite element analysis of the selective laser sintering process. J Mater Process Technol 209(2):700–706. doi: 10.1016/j.jmatprotec.2008.02.040 CrossRefGoogle Scholar
  9. 9.
    Hussein A, Hao L, Yan C, Everson R (2013) Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des 52:638–647. doi: 10.1016/j.matdes.2013.05.070 CrossRefGoogle Scholar
  10. 10.
    Sun S B, Zheng L J, Liu Y Y, Liu J H, Zhang H (2015) Selective laser melting of Al-Fe-V-Si heat-resistant aluminum alloy powder: modeling and experiments. Int J Adv Manuf Technol:1–11. doi: 10.1007/s00170-015-7137-8
  11. 11.
    Kizaki Y, Azuma H, Yamazaki S, Sugimoto H, Takagi S (1993) Phenomenological studies in laser cladding. Part I. Time-resolved measurements of the absorptivity of metal powder. Jpn J Appl Phys 32(part 1):205–212CrossRefGoogle Scholar
  12. 12.
    Tolochko NK, Laoui T, Khlopkov YV, Mozzharov SE, Titov VI, Ignatiev MB (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyping J 6(3):155–160. doi: 10.1108/13552540010337029 CrossRefGoogle Scholar
  13. 13.
    Taylor CM (2004) Direct laser sintering of stainless steel: thermal experiments and numerical modelling, Ph.D. The University of Leeds LeedsGoogle Scholar
  14. 14.
    Wang XC, Laoui T, Bonse J, Kruth JP, Lauwers B, Froyen L (2002) Direct selective laser sintering of hard metal powders: experimental study and simulation. Int J Adv Manuf Technol 19(5):351–357. doi: 10.1007/s001700200024 CrossRefGoogle Scholar
  15. 15.
    Fischer P, Romano V, Weber HP, Karapatis NP, Boillat E, Glardon R (2003) Sintering of commercially pure titanium powder with a Nd:YAG laser source. Acta Mater 51(6):1651–1662. doi: 10.1016/s1359-6454(02)00567-0 CrossRefGoogle Scholar
  16. 16.
    Sih SS, Barlow JW (1995) Emissivity of powder beds. In: Marcus H, Beaman J, Barlow J, Bourell D, Crawford R (eds) Proceedings of the 6th Annual SFF Symposium, Austin. The University of Texas, pp 402–408Google Scholar
  17. 17.
    Patil RB, Yadava V (2007) Finite element analysis of temperature distribution in single metallic powder layer during metal laser sintering. Int J Mach Tools Manuf 47(7–8):1069–1080. doi: 10.1016/j.ijmachtools.2006.09.025 CrossRefGoogle Scholar
  18. 18.
    Zhou W, Wang X, Hu J, Zhu X (2013) Melting process and mechanics on laser sintering of single layer polyamide 6 powder. Int J Adv Manuf Technol:1–8. doi: 10.1007/s00170-013-5113-8
  19. 19.
    Yagi S, Kunii D (1957) Studies on effective thermal conductivities in packed beds. AIChE Journal 3(3):373–381. doi: 10.1002/aic.690030317 CrossRefGoogle Scholar
  20. 20.
    Xue S, Barlow J (1991) Models for the prediction of the thermal conductivities of powders. In: Marcus H, Beaman J, Barlow J, Bourell D, Crawford R (eds) Proceedings of the 2nd Annual SFF Symposium, Austin, The University of Texas , pp 62–69Google Scholar
  21. 21.
    Sih SS, Barlow JW (1994) Measurement and prediction of the thermal conductivity of powders at high temperatures. In: Marcus H, Beaman J, Barlow J, Bourell D, Crawford R (eds) Proceedings of the 5th Annual SFF Symposium, Austin, The University of Texas, pp 321–329Google Scholar
  22. 22.
    Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing, CambridgeCrossRefGoogle Scholar
  23. 23.
    Tolochko NK, Arshinov MK, Gusarov AV, Titov VI, Laoui T, Froyen L (2003) Mechanisms of selective laser sintering and heat transfer in Ti powder. Rapid Prototyping J 9(5):314–326. doi: 10.1108/13552540310502211 CrossRefGoogle Scholar
  24. 24.
    Kamara AM, Marimuthu S, Li L (2014) Finite element modeling of microstructure in laser-deposited multiple layer Inconel 718 parts. Mater Manuf Process 29(10):1245–1252. doi: 10.1080/10426914.2014.930963 CrossRefGoogle Scholar
  25. 25.
    Steen WM, Mazumder J (2010) Laser material processing. Springer, New YorkCrossRefGoogle Scholar
  26. 26.
    Yin J, Zhu H, Ke L, Lei W, Dai C, Zuo D (2012) Simulation of temperature distribution in single metallic powder layer for laser micro-sintering. Comput Mater Sci 53(1):333–339. doi: 10.1016/j.commatsci.2011.09.012 CrossRefGoogle Scholar
  27. 27.
    ANSYS (2005) APDL Programmer’s Guide. SAS IP Inc, Canonsburg PA 15317Google Scholar
  28. 28.
    Acherjee B, Kuar AS, Mitra S, Misra D (2012) Effect of carbon black on temperature field and weld profile during laser transmission welding of polymers: a FEM study. Opt Laser Technol 44(3):514–521. doi: 10.1016/j.optlastec.2011.08.008 CrossRefGoogle Scholar
  29. 29.
    Acherjee B, Kuar AS, Mitra S, Misra D (2010) Finite element simulation of laser transmission welding of dissimilar materials between polyvinylidene fluoride and titanium. Int J Eng Sci Technol 2(4):176–186CrossRefGoogle Scholar
  30. 30.
    Fan K, Cheung W, Gibson I (2001) Material movement and fusion behavior of TrueForm and TrueForm/SiO2 during selective laser sintering. In: Bourell D (ed) Proceedings of the 12th Annual SFF Symposium, Austin. The University of Texas, pp 146–154Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Jie Yin
    • 1
  • Haihong Zhu
    • 1
    Email author
  • Linda Ke
    • 1
  • Panpan Hu
    • 1
  • Chongwen He
    • 1
  • Hu Zhang
    • 1
  • Xiaoyan Zeng
    • 1
  1. 1.Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations