Advertisement

Optimization for a three-stage production system in the Internet of Things: procurement, production and product recovery, and acquisition

  • Chang Fang
  • Xinbao Liu
  • Panos M. Pardalos
  • Jun Pei
ORIGINAL ARTICLE

Abstract

Recovery of the end-of-use products has become a topic of considerable interest in the advanced manufacturing industry due in part to uncertainties in the quality and volume of product returns. The Internet of Things (IoT) that enables the tracing, detecting, storing, and analyzing the product life cycle data for each individual item can mitigate or eliminate these uncertainties. In this paper, an integrated three-stage model is presented based on IoT technology for the optimization of procurement, production and product recovery, pricing and strategy of return acquisition. The remaining value is used to measure the return condition. The model considers three recovery options related to refurbishing, component reuse and disposal, and the value deterioration for satisfying the product demand in each stage of product life cycle (PLC). A novel particle swarm optimization (PSO) algorithm based on two heuristic methods is proposed to solve the problem. A numerical example and sensitivity analysis are used to illustrate the performance of both algorithm and applicability of the model.

Keywords

Internet of Things Procurement Product recovery Return acquisition Value deterioration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neto JQF, Walther G, Bloemhof J, van Nunen JAEE, Spengler T (2010) From closed-loop to sustainable supply chains: the WEEE case. Int J Prod Res 48(15):4463–4481CrossRefzbMATHGoogle Scholar
  2. 2.
    Savage M (2005) Implementation of waste electric and electronic equipment directive in EU 25. Technical report, European Commission, Joint Research CentreGoogle Scholar
  3. 3.
    Sarma S, Brock DL, Ashton K (2000) The networked physical world. TR MIT-AUTOID-WH-001, MIT Auto-ID CenterGoogle Scholar
  4. 4.
    Gubbi J, Buyya R, Marusic S (2013) Palaniswami M (2013) internet of things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29:1645–1660CrossRefGoogle Scholar
  5. 5.
    Kiritsis D (2011) Closed-loop PLM for intelligent products in the ear of the internet of things. Comput Aided Des 43(5):479–501CrossRefGoogle Scholar
  6. 6.
    Robotis A, Bhattacharya S, Van Wassenhove LN (2005) The effect of remanufacturing on procurement decisions for resells in secondary markets. Eur J Oper Res 163(3):688–705CrossRefzbMATHGoogle Scholar
  7. 7.
    Zhou W, Piramuthu S (2013) Remanufacturing with PFID item-level information: optimization, waste reduction and quality improvement. Int J Prod Econ 145(2):647–657CrossRefGoogle Scholar
  8. 8.
    Lu DX (2011) Information architecture for supply chain quality management. Int J Prod Res 49(1):183–198CrossRefGoogle Scholar
  9. 9.
    Jammes F, Smit H (2005) Service-oriented paradigms in industrial automation. IEEE T Ind Inform 1(1):62–70CrossRefGoogle Scholar
  10. 10.
    Tao F, Cheng Y, Xu LD, Zhang L, Li BH (2014) CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system. IEEE T Ind Inform 10(2):1435–1442CrossRefGoogle Scholar
  11. 11.
    Guide VDR, Daniel R, Souza GC, Van Wassenhove LN et al (2006) Time value of commercial production returns. Manag Sci 52(8):1200–1214CrossRefzbMATHGoogle Scholar
  12. 12.
    Guide VDR, Van Wassenhove LN (2009) The evolution of closed-loop supply chain research. Oper Res 57(1):10–18CrossRefzbMATHGoogle Scholar
  13. 13.
    Bai H (2009) Reverse supply chains coordination and design for profitable returns: an example of ink cartridge. Master Thesis, Worcester Polytechnic InstituteGoogle Scholar
  14. 14.
    Anderson CR, Zeithaml CP (1984) Stage of the product life cycle, business strategy, and business performance. Acad Manag J 27(1):5–24CrossRefGoogle Scholar
  15. 15.
    van der Laan E, Salomon M (1997) Production planning and inventory control with remanufacturing and disposal. Eur J Oper Res 102(2):264–278CrossRefzbMATHGoogle Scholar
  16. 16.
    Kurkin O, Januska M (2010) Product life cycle in digital factory. In Knowledge management and innovation: a business competitive edge perspective. 15th International Business Information Management Association, Cairo, Egypt, Nov 06–07, ISBN: 978-0-9821489-4-5, pp 1881–1886Google Scholar
  17. 17.
    Prince M, Smith JC, Geunes J (2014) A three-stage procurement optimization problem under uncertainty. Nav Res Logist 60(5):395–412CrossRefMathSciNetGoogle Scholar
  18. 18.
    Chen K (2012) Procurement strategy and coordination mechanism of the supply chain with one manufacturer and multiple suppliers. Int J Prod Econ 138(1):125–135CrossRefGoogle Scholar
  19. 19.
    Goyal SK, Deshmukh SG (1992) Integrated procurement production systems—a review. Eur J Oper Res 62(1):1–10CrossRefzbMATHGoogle Scholar
  20. 20.
    Guide VDR, Van Wassenhove LN (2001) Managing product returns for remanufacturing. Prod Oper Manag 10(2):142–155CrossRefGoogle Scholar
  21. 21.
    Guide VDR, Jayaraman V (2000) Production acquisition management: current industry practice and a proposed framework. Int J Prod Res 38(16):3779–3800CrossRefzbMATHGoogle Scholar
  22. 22.
    Mukhopadhyay SK, Ma H (2009) Joint procurement and production decisions in remanufacturing under quality and demand uncertainty. Int J Prod Econ 120(1):5–17CrossRefGoogle Scholar
  23. 23.
    Li X, Li YJ, Saghafian S (2013) A hybrid manufacturing/remanufacturing system with random remanufacturing yield and marked-driven product acquisition. IEEE T Eng Manag 60(2):424–437CrossRefGoogle Scholar
  24. 24.
    Minner S, Kiesmuller GP (2012) Dynamic product acquisition in closed loop supply chains. Int J Prod Res 50(11):2836–2851CrossRefGoogle Scholar
  25. 25.
    Niknejad A, Petrovic D (2014) Optimization of integrated reverse logistics networks with different product recovery routes. Eur J Oper Res 238(1):143–154CrossRefMathSciNetGoogle Scholar
  26. 26.
    Ondemir O, Ilgin MA, Gupta SM (2012) Optimal end-of-life management in closed-loop supply chains using RFID and sensors. IEEE T Ind Inform 8(3):719–728CrossRefGoogle Scholar
  27. 27.
    Baki MF, Chaouch BA, Abdul-Kader W (2014) A heuristic procedure for the dynamic lot sizing problem with remanufacturing and product recovery. Comput Oper Res 43:225–236CrossRefMathSciNetGoogle Scholar
  28. 28.
    Ilgin MA, Gupta SM (2010) Environmental conscious manufacturing and product recovery (ECMPRO): a review of the state of the art. J Environ Manag 91(3):563–591CrossRefGoogle Scholar
  29. 29.
    Gungor A, Gupta SM (1999) Issues in environmental conscious manufacturing and product recovery: a survey. Comput Ind Eng 36(4):811–853CrossRefGoogle Scholar
  30. 30.
    Fu Q, Lee CY, Teo CP (2010) Procurement management using option contracts: random spot price and the portfolio effect. IIE Trans 43(11):793–811CrossRefGoogle Scholar
  31. 31.
    Xu H (2010) Managing production and procurement through option contracts in supply chains with random yield. Int J Prod Econ 126(2):306–131CrossRefGoogle Scholar
  32. 32.
    Yu MC, Goh M, Lin HC (2012) Fuzzy multi-objective vendor selection under lean procurement. Euro J Oper Res 219(2):305–311CrossRefzbMATHGoogle Scholar
  33. 33.
    Kim SH, Netessine S (2013) Collaborative cost reduction and component procurement under information asymmetry. Manag Sci 59(1):189–206CrossRefGoogle Scholar
  34. 34.
    Das BC, Das B, Mondal SK (2013) Integrated supply chains model for a deteriorating item with procurement cost dependent credit period. Comput Ind Eng 64(3):788–796CrossRefGoogle Scholar
  35. 35.
    Hu F, Lim CC, Lu Z (2014) Optimal production and procurement decisions in a supply chain with an option contract and partial backordering under uncertainties. Appl Math Comput 232(1):1225–1234CrossRefMathSciNetGoogle Scholar
  36. 36.
    Galbreth MR, Blackburn JD (2006) Optimal acquisition and sorting policies for remanufacturing. Prod Oper Manag 15(3):384–392CrossRefGoogle Scholar
  37. 37.
    Vadde S, Kamarthi SV, Gupta SM (2007) Optimal pricing of reusable and recyclable components under alternative product acquisition mechanisms. Int J Prod Res 45(18–19):4621–4652CrossRefzbMATHGoogle Scholar
  38. 38.
    Teunter RH, Flapper SDP (2011) Optimal core acquisition and remanufacturing policies under uncertain core quality fractions. Eur J Oper Res 210(2):241–248CrossRefzbMATHGoogle Scholar
  39. 39.
    Zhou SX, Yu Y (2011) Optimal product acquisition, pricing, and inventory management for systems with remanufacturing. Oper Res 59(2):514–521CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Kleber R, Schulz T, Voigt G (2012) Dynamic buy-back for product recovery in end of life spare parts procurement. Int J Prod Res 50(6):1476–1488CrossRefGoogle Scholar
  41. 41.
    Zeng AZ (2013) Coordination mechanisms for a three-stage reverse supply chain to increase profitable returns. Nav Res Logist 60(1):32–45CrossRefGoogle Scholar
  42. 42.
    Inderfurth K, Kleber R (2013) An advanced heuristic for multiple-option space parts procurement after end-of-production. Prod Oper Manag 22(1):54–70CrossRefGoogle Scholar
  43. 43.
    Konstantaras I, Skouri K (2010) Lot sizing for a single product recovery system with variable setup numbers. Eur J Oper Res 203(2):326–335CrossRefzbMATHGoogle Scholar
  44. 44.
    Vadde S, Zeid A, Kamarthi SV (2011) Pricing decisions in a multi-criteria setting for product recovery facilities. Omega-Int J Manag S 39(2):186–193CrossRefGoogle Scholar
  45. 45.
    Kim T, Goyal SK (2011) Determination of the optimal production policy and product recovery policy: the impacts of sales margin of recovered product. Int J Prod Res 49(9):2535–2550CrossRefGoogle Scholar
  46. 46.
    Ondemir O, Gupta SM (2014) Quality management in product recovery using the internet of things: an optimization approach. Comput Ind 65(3):491–504CrossRefGoogle Scholar
  47. 47.
    Miorandi D, Sicari S, Pellegrini FD, Chlamtac I (2012) Internet of things: vision, applications and research challenges. Ad Hoc Netw 10(7):1497–1516CrossRefGoogle Scholar
  48. 48.
    Yang L, Yang SH, Plotnick L (2013) How the internet of things technology enhances emergency response operations. Technol Forecast Soc 80(9):1854–1867CrossRefGoogle Scholar
  49. 49.
    Zhang L, Luo Y, Tao F et al (2014) Cloud manufacturing: a new manufacturing paradigm. Enterp Inf Syst-UK 8(2):167–187CrossRefGoogle Scholar
  50. 50.
    Sung WT, Chiang YC (2012) Improved particle swarm optimization algorithm for android medical care IOT using modified parameters. J Med Syst 36(6):3755–3763CrossRefGoogle Scholar
  51. 51.
    Li HS, Dimitrovski A, Song JB, Han Z, Qian LJ (2014) Communication infrastructure design in cyber physical systems with applications in smart grids: a hybrid system framework. IEEE Commun Surv Tutorials 16(3):1689–1708CrossRefGoogle Scholar
  52. 52.
    Jun HB, Shin JH, Kiritsis D, Xirouchakis P (2007) System architecture for closed-loop PLM. Int J Comput Integ Matuf 20(7):684–698CrossRefGoogle Scholar
  53. 53.
    Jun HB, Kiritsis D, Xirouchakis P (2007) Research issues on closed-loop PLM. Comput Ind 58(8–9):855–868CrossRefGoogle Scholar
  54. 54.
    Yang XY, Moore P, Chong SK (2009) Intelligent products: from lifecycle data acquisition to enabling product related services. Comput Ind 60(3):184–194CrossRefGoogle Scholar
  55. 55.
    Luttropp C, Johansson J (2010) Improved recycling with life cycle information tagged to the product. J Clean Prod 18(4):346–354CrossRefGoogle Scholar
  56. 56.
    Parlikad AK, McFarlane D (2007) RFID-based production information in end-of-life decision making. Control Eng Pract 15(11):1348–1363CrossRefGoogle Scholar
  57. 57.
    Nawa K, Chandrasiri NP, Yannagihara T, Oguchi K (2014) Cyber physical system for vehicle application. T I Meas Control 36(7):898–905CrossRefGoogle Scholar
  58. 58.
    Wan JF, Zhang DQ, Zhao SJ, Yang LT, Lloret J (2014) Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions. IEEE Commun Mag 52(8):106–113CrossRefGoogle Scholar
  59. 59.
    Jia DY, Lu KJ, Wang JP (2014) On the network connectivity of platoon-based vehicular cyber-physical systems. Transp Res C-Emer 40:215–230CrossRefGoogle Scholar
  60. 60.
    Facchinetti T, Della Vedova ML (2011) Real-time modeling for direct load control in cyber-physical power systems. IEEE T Ind Inform 7(4):689–698CrossRefGoogle Scholar
  61. 61.
    Li HS, Lai LF, Poor HV (2012) Multicast routing for decentralized control of cyber physical systems with an application in smart grid. IEEE J Sel Areas Commun 30(6):1097–1107CrossRefGoogle Scholar
  62. 62.
    Li L, Li S, Zhao S (2014) QoS-aware scheduling of service-oriented internet of things. IEEE T Ind Inform 10(2):1497–1505CrossRefGoogle Scholar
  63. 63.
    Haque SA, Aziz SM, Rahman M (2014) Review of cyber-physical system in healthcare. Int J Distrib Sens Netw 2014:1–20CrossRefGoogle Scholar
  64. 64.
    Kagermann H, Wolfgang W, Helbi J (2013) Recommendations for implementing the strategic initiative INDUSTRIE 4.0. http://www.plattform-i40.de/finalreport2013
  65. 65.
    Leber J (2012) General electric pitches an industrial internet. MIT Technology Review. http://www.technologyreview.com
  66. 66.
    Evans PC, Annunziata M (2012) Industrial internet: pushing the boundaries of minds and machines. http://files.gereports.com/wp-content/uploads/2012/11/ge-industrial-internet-vision-paper.pdf
  67. 67.
    Zolfagharinia H, Hafezi M, Farahani RZ, Fahimnia B (2014) A hybrid two-stock inventory control model for a reverse supply chain. Transp Res E-Log 67:141–161CrossRefGoogle Scholar
  68. 68.
    Blackburn JD, Guide VDR, Souza GC, Van Wassenhove LN (2004) Reverse supply chains for commercial returns. Calif Manag Rev 46(2):6–22CrossRefGoogle Scholar
  69. 69.
    Jayaraman V (2006) Production planning for closed-loop supply chains with product recovery and reuse: an analytical approach. Int J Prod Res 44(5):981–998CrossRefzbMATHGoogle Scholar
  70. 70.
    Kumar M, Husian M, Upreti N, Gupta D (2010) Genetic algorithm: review and application. Int J Inform Tech Knowl Manag 2(2):451–454Google Scholar
  71. 71.
    Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344:243–278CrossRefMathSciNetzbMATHGoogle Scholar
  72. 72.
    Suman B, Kumar P (2006) A survey of simulated annealing as a tool for single and multiobjective optimization. J Oper Res Soc 57:1143–1160CrossRefzbMATHGoogle Scholar
  73. 73.
    Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization. Part II: hybridization, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat Comput 7(1):109–124CrossRefMathSciNetzbMATHGoogle Scholar
  74. 74.
    Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. Proceedings of the International Conference on System, Man and Cybernetics, October 12–15, Florida, USA, Piscataway, NJ: IEEE Service Centre: 4104–4109Google Scholar
  75. 75.
    Eberhart RC, Shi Y (1998) Comparison between genetic algorithms and particle swarm optimization. Proceedings of the 7th Annual Conference on Evolutionary Programming, Springer, Berlin, Germany, pp 611–616Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Chang Fang
    • 1
    • 2
    • 3
  • Xinbao Liu
    • 1
    • 3
  • Panos M. Pardalos
    • 2
  • Jun Pei
    • 1
    • 2
    • 3
  1. 1.School of Management, Department of Information Management and Information SystemsHefei University of TechnologyHefeiChina
  2. 2.Center for Applied Optimization, Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Key Laboratory of Process Optimization and Intelligent Decision-Making of Ministry of EducationHefeiChina

Personalised recommendations